Let $G = (V, E)$ be a DAG; A topological ordering of V is a linear ordering $f : V \rightarrow \{1, 2, ..., n\}$ so that for any $xy \in E$, $f(x) < f(y)$.

Let $P = \{S_1, S_2, ..., S_k\}$ be a partition of V, where S_1 is the set of all sources in G, S_2 is the set of all sources obtained after removing S_1, etc. Then, we say P is an ordered partition of V.

Theorem

Let G be a DAG and let $P = \{S_1, S_2, ..., S_k\}$ be an ordered partition of V. Then, for $i = 1, 2, ..., k$, S_i is an independent set. In addition, there is a path q in G of length $k-1$.

We conclude that q in the above Theorem is a longest path, since its length equals to $|P|-1$. Note that an ordered partition, and a longest path in G, can be computed in $O(|V|+|E|)$ time, employing a slight modification of the topological ordering algorithm.