Enumeration of Perfect Sequences in Chordal Graphs

Yasuko Matsui, Ryuhei Uehara, Takeaki Uno

Center for Computational Epidemiology and Response Analysis
University of North Texas

May 4, 2011
THE PROBLEM: Algorithm to enumerating all perfect sequences (PS).

A PS is a sequence of maximal cliques obtained by using the reverse order of repeatedly removing the leaves of a clique tree.

Difficulties developing this type of algorithms.

- A chordal graph does not generally have a unique clique tree.
- A PS can normally be generated by two or more distinct clique trees.

It follows: Hard to uses a straightforward way to generate the PS from each possible clique tree.

SOLUTION: A method to enumerate PS without constructing clique trees. Average of $O(1)$ for each sequence.
Approaches

- Naive: Generate all clique trees and generate all PS for each clique tree (can not avoid redundancy)
- Contribution: Make a weighted intersection graph of maximal cliques
 1. Unique construction.
 2. Each MWST of the intersecting graph gives a clique tree.
- Generate each PS from the union of MWST without any repetitions.

OBS: PSs are related to the set of PEOs.
Overview

A graph $G=(V,E)$ is chordal iff has no chordless cycle of length more than three.

The set of maximal cliques in chordal graph G admits special tree structures called clique trees.

Figure: Chordal Graph

Figure: Weighted clique graph
Overview CONT’

- A PS is a sequence of maximal cliques obtained by using the reverse order of repeatedly removing the leaves of a clique tree.
- PS are required and must not have repetitions.

Figure: Weighted clique graph

Figure: Clique trees and perfect sequences
Definition: Weighted Clique Graph

Let \(G = (V, E) \) a chordal graph and the set \(C(G) \) of all maximal cliques. Let \(G(G) = (C(G), \mathcal{E}) \) with a weighted function let \(w: \mathcal{E} \rightarrow \mathbb{Z} \). \(\mathcal{E} \) contains the edge \(C_1, C_2 \) iff \(C_1 \cap C_2 \neq \emptyset \). For each edge in \(E \), \(w(C_1, C_2) \) is defined by \(|C_1 \cap C_2| \); therefore, \(\mathcal{E} \) has a positive integer weight less than \(|V| \).
A chordal graph $G = (V, E)$ is an intersection graph. That is, each vertex v of G corresponds to a subtree T_v of T, and $u, v \in E$ iff T_v intersects with T_u.

Now, like before, let’s make each $c_i \in T$ correspond to a maximal clique $C_i \in G$. C_i consists of all vertices in G such that T_v contains the node c_i. Therefore the tree T is called a clique tree of G.

Let’s make an ordering π from the set of maximal cliques C_1, C_2, \ldots, C_k of G such that $C_{\pi(i)}$ is a leaf of tree T_i. T_i is a subgraph of T induced by $C_{\pi(1)}, C_{\pi(2)}, \ldots C_{\pi(i)}$ for each i.

One such a sequence from T can be obtain by repeatedly pruning leaves and put them on top of the sequence until T empty.
For a chordal graph G, $C(G)$ is the set of maximal cliques.

FACT: $|C(G)| \leq |V|$. Let $k = |C(G)|$.

$C(G) = C_1, C_2, \ldots, C_k$ and π be a permutation of k elements.
Lemma (1)

Let $\mathcal{G}(G)$ be the weighted clique graph of a chordal graph G with a weight function w. A spanning tree T of this graph is a clique tree of G iff it has the maximum weight.

OBS: We note that any chordal graph of n vertices contains n maximal cliques at most. Therefore, $\mathcal{G}(G)$ contains $\Theta(n)$ nodes. On the other hand, although a star S_n of n vertices contains $E(S) = n - 1$, and $n - 1$ maximal cliques, the $\mathcal{G}(S_n)$ is a complete graph K_{n-1} with $n - 1$ nodes that contains. $P(n - 1, 2) = \Theta(n^2)$ edges. Thus, a trivial upper bound $\Theta(|V|^2)$ for the number of edges in $\mathcal{G}(G)$.

Figure: Star S_5

Figure: $\mathcal{G}(S_5)$
Suppose T is a clique tree of a chordal $G = (V, E)$ that consists of at least two maximal cliques; hence, G is not complete (are you sure?).

Remainder:

Given a graph $G = (V, E)$ a $v \in V$ is simplical in G if $N(v)$ is a clique in G.

Lemma (2)

Let C be a leaf in T and C' be the unique neighbor of C. Then for each $v \in C$, v is simplical in G iff $v \in C \setminus C'$.
Proof.

If \(v \in C \setminus C' \), it is easy to see that \(N(v) = C \setminus v \), and therefore, \(v \) is simplicial. Now suppose a simplicial vertex \(v \in C \cap C' \) to derive a contradiction. Since \(v \in C \), \(N(v) \) contains all the vertices in \(C \), except \(v \). On the other hand, if \(v \) is also in \(C' \), \(N(v) \) contains all the vertices in \(C' \), except \(v \). However, \(C \) and \(C' \) are distinct maximal cliques. Therefore, there are two vertices \(u \in C \) and \(w \in C' \) with \(u, w \notin E \), which contradicts that \(v \) is simplicial. Therefore, \(v \) is in \(C \setminus C' \).

\(\square \)

e.g.

Let \(C = \{a, b, c\} \) and \(C' = \{c, d, e\} \) be neighbors in a clique tree, then the set of \(v \in C \setminus C' = \{a, b\} \) (a clique)
Algorithm 1. Outline of Enumeration

- **Input**: Chordal graph $G = (V, E)$;
- **Output**: All perfect sequences of G;
1. Construct weighted clique graph $G(G)$;
2. Compute arbitrary maximum weighted spanning tree T^* of $G(G)$;
3. Construct graph $G(G)^*$ composed of edges that can be included in clique trees from $G(G)$ and T^*;
4. Enumerate all sequences of maximal cliques obtained by repeatedly removing maximal cliques that can be leaves of some clique trees.

Algorithm: Perfect Sequences

Efficiently find maximal cliques that can be leaves.

1. Compute maximum weighted spanning tree T^*
2. Produce unweighted graph $G(G)^*$ from $G(G)$ and T^*
 - An edge $e \in G(G)$ is **unnecessary** if it cannot be included in any maximum weighted spanning tree of $G(G)$.
 - An $e \in G(G)$ is **indispensable** if it appears in any maximum weighted spanning tree of $G(G)$.
 - Other edges are called **dispensable**, appear in some (but not all) T^*.
Let e be an edge not in T^*. Since T^* is a MST of $G(G)$, the $\{e\} + T^*$ produces a unique cycle C_e which consists of e and the other edges in T^*. We call C_e an elementary cycle of e.

Lemma (3)

For an edge $e \notin T^*$, $w(e) \leq w(e')$ holds for any $e' \in C_e \setminus e$. Moreover, e is unnecessary iff $w(e) < w(e')$ holds for any $e' \in C_e \setminus e$. On the other hand, e is dispensable iff $w(e) = w(e')$ holds for some $e' \in C_e \setminus e$.

By contradiction.

If we have $w(e) > w(e_i)$ for some $1 \leq i < k$, by swapping e and e_i, we can obtain a heavier spanning tree, which contradicts the fact that T^* is a MST. Therefore, $w(e) \leq w(e_i)$ for each $1 \leq i < k$. When $w(e) = w(e_i)$ for some $1 \leq i < k$, we can obtain a MST T' by removing e' and adding e to T'. T does not include e while T' includes e, which implies e is dispensable.
Lemma (4)

An edge e in T^* is an **indispensable** edge if $w(e) > w(e')$ for all edges e' such that e' is not on T and $C_{e'}$ contains e.

Proof: Observation.

There is no edge e' not in T^* such that $C_{e'}$ contains e and $w(e') \geq w(e)$.

Sets of unnecessary, indispensable, and dispensable edges are denoted by E_u, E_i, and E_d, respectively. The sets can be computed by the following algorithm in $O(|G(G)|^3) = O(|V|^3)$ time.
Algorithm 2. Search for Unnecessary, Indispensable, and Dispensable Edges

Input : The weighted clique graph $CG(G) = (C(G), E)$ and an arbitrary maximum weighted spanning tree T^* of $CG(G)$;

Output: Sets E_u, E_i, and E_d of the unnecessary, indispensable, and dispensable edges;

1 set $E_u := \emptyset$; $E_d := \emptyset$; $E_i := \emptyset$;
2 foreach e not in T^* do
3 if $w(e) < w(e')$ for all $e' \in C_e$ then
4 $E_u := E_u \cup \{e\}$;
5 else
6 $E_d := E_d \cup \{e\}$;
7 foreach $e' \in C_e$ satisfying $w(e) = w(e')$ do
8 $E_d := E_d \cup \{e'\}$;
9 end
10 $E_i := E \setminus (E_u \cup E_d)$;
11 return (E_i, E_u, E_d);
Define: $\mathcal{G}(G)^*$ by $(C(G), \mathcal{E}_i \cup \mathcal{E}_d)$

OBS: Any spanning tree of $\mathcal{G}(G)^*$ that contains all the edges in \mathcal{E}_i gives a maximum weighted spanning tree of $\mathcal{G}(G)$

Lemma (5)

A maximal clique C can be a leaf of a clique tree iff C satisfies (1) C is incident to at most one edge in \mathcal{E}_i, and (2) C is not a cut vertex in $\mathcal{G}(G)^*$.

Proof.

First, we suppose that C is a leaf of a clique tree T. Since T is a clique tree of G, T is a spanning tree in $\mathcal{G}(G)^*$ that includes all the edges in \mathcal{E}_i. Since C is a leaf of T, C is incident to at most one edge of \mathcal{E}_i, and C is not a cut vertex of $\mathcal{G}(G)^*$. Thus, C satisfies the conditions.

We next suppose that C satisfies the conditions. We assume that $\mathcal{G}(G)$ contains two or more nodes. We choose any edge e from $\mathcal{E}_i \cup \mathcal{E}_d$ that is incident to C. We always can choose e since $\mathcal{G}(G)$ is connected. Then, we remove C from $\mathcal{G}(G)^*$. Since C is not a cut vertex, the resultant graph $\mathcal{G}(G)'$ is still connected. Therefore, $\mathcal{G}(G)'$ has a spanning tree T' which contains all the edges in $\mathcal{E}_i \setminus e$. Then, by adding e to T', we have a spanning tree T that contains all the edges in \mathcal{E}_i, and C is a leaf of T.

\qed
Algorithm 3. All Perfect Sequences

Input: Chordal graph $G = (V, E)$;
Output: All perfect sequences of G;
1. construct $\mathcal{C}G(G)$;
2. find maximum weighted spanning tree T^* of $\mathcal{C}G(G)$;
3. by using T^*, compute sets \mathcal{E}_u, \mathcal{E}_i, \mathcal{E}_d of unnecessary, indispensable, and dispensable edges, respectively;
4. set P to empty sequence; // keep current perfect sequence
5. let $\mathcal{C}G(G)^* := (\mathcal{C}(G), \mathcal{E}_i \cup \mathcal{E}_d)$;
6. call Enumerate($\mathcal{C}G(G)^*$, P);

Procedure Enumerate($\mathcal{C}G(G)^* = (\mathcal{C}(G), \mathcal{E}_i \cup \mathcal{E}_d)$, P)

[H]
Output: A perfect sequence at the last node;
7. if $\mathcal{C}(G)$ contains one node C then
8. output $(C + P)$; // $C + P$ denotes concatenation of node C and sequence P

9. else
10. compute $S := \{ C \in \mathcal{C}(G) \mid C$ satisfies the leaf condition$\}$;
11. foreach $C \in S$ do
12. call Enumerate($\mathcal{C}G(G) \setminus C$, $C + P$);
13. end
14. end
Theorem (1)

For any chordal graph $G = (V,E)$, with $O(|V|^3)$ time and $O(|V|^2)$ space pre-computation, all perfect sequences can be enumerated in $O(1)$ time per sequence on average and $O(|V|^2)$ space.
Fig. 2. Part of computation tree that enumerates all perfect sequences.
References