MAXIMUM INDEPENDENT SET IN PLANAR GRAPH

Presented by
Himanshu Dutta
Nonserial dynamic programming:

- Such a problem is of the following form: maximize the objective $f(x_1, \cdots, x_n)$, where f is given as a sum of terms $f_k(\cdot)$, each of which is a function of only a subset of the variables.
• Maximum Independent set problem:
Let $G = (V, E)$ be an undirected graph.
For each vertex v_i, $1 \leq i \leq n$, let x_i be an associated variable which can assume a value of either zero or one.

Let the objective function $f(x_1, x_2, \cdots, x_n)$ be defined by

$$f(x_1, x_2, \cdots, x_n) = \sum_{(v_i, u_j) \in E} f_e(x_i, x_j) + \sum_{i=1}^{n} x_i,$$

where $f_e(x_i, x_j) = -\infty$ if $x_i = x_j = 1$, $f_e(x_i, x_j) = 0$ otherwise.

Maximum independent set in G corresponds to an assignment of values 0, 1 to x_1, x_2, \cdots, x_n which maximizes f.

$x_i = 1$ means x_i is in the independent set
$x_i = 0$ means x_i is not in the independent set.
Maximum Independent Set:

nonserial dynamic programming problem can be solved in $2^{O(n)}$ time.

- For Planar Graph:
 problem can be solved in $2^{O(\sqrt{n})}$ time.

 no term $f_k(\cdot)$ of f can contain more than four variables, since the complete graph on five vertices is not planar.
The restriction of objective function:

\[f = \sum_{k=1}^{m} f_k \] to a set of variables \(x_{i_1}, \cdots, x_{i_j} \) is the objective function \(f' = \sum \{ f_k | f_k \text{ depends only upon } x_{i_1}, \cdots, x_{i_j} \} \).

Lipton Tarjan Algorithm:

Given an objective function \(f(x_1, \cdots, x_n) = \sum_{k=1}^{m} f_k \) and a subset \(S \) of the variables \(x_1, \cdots, x_n \) which are constrained to have specific values, maximize \(f \) subject to the constraints on the variables in \(S \).
Lipton – Tarjan Exact Algorithm:

Step 1. If \(n < 100 \), solve the problem by exhaustively trying all possible assignments to the unconstrained variables. Otherwise, go to Step 2.

Step 2. Apply Corollary 1 to the interaction graph \(G \) of \(f \). Let \(A, B, C \) be the resulting vertex partition. Let \(f_1 \) be the restriction of \(f \) to \(A \cup C \) and let \(f_2 \) be the restriction of \(f \) to \(B \cup C \). For each possible assignment of values to the variables in \(C - S \), perform the following steps:

(a) Maximize \(f_1 \) with the given values for the variables in \(C \cup S \) by applying the method recursively;

(b) maximize \(f_2 \) with the given values for the variables in \(C \cup S \) by applying the method recursively;

(c) combine the solutions to (a) and (b) to obtain a maximum value of \(f \) with the given values for the variables in \(C \cup S \).

Choose the assignment of values to variables in \(C \cup S \) which maximizes \(f \) and return the appropriate value of \(f \) as the solution.

If \(n \geq 100 \), the algorithm solves at most \(2^{O(\sqrt{n})} \) subproblems in Step 2, since \(C \) is of \(O(\sqrt{n}) \) size.

Each subproblem contains at most \(2n/3 + 2\sqrt{2}\sqrt{n} \leq 29n/30 \) variables.

\(t(n) \leq O(n) + 2^{O(\sqrt{n})} \cdot t(29n/30) \) if \(n \geq 100 \), \(t(n) = O(1) \) if \(n < 100 \).
Approximate algorithm:

- **THEOREM:** Let G be an n-vertex planar graph with nonnegative vertex costs summing to no more than one and let $0 \leq \varepsilon \leq 1$. Then there is some set S of $O(\sqrt{n/\varepsilon})$ vertices whose removal leaves G with no connected component of cost exceeding ε. Furthermore the set C can be found in $O(n \log n)$ time.
Lipton – Tarjan Algorithm to find approximate maximum Independent Set

Step 1. Apply Theorem to G with $\varepsilon = k(n)/n$ and each vertex having cost $1/n$ to find a set of vertices C of size $O(n/\sqrt{k(n)})$ whose removal leaves no connected component with more than $k(n)$ vertices.

Step 2. In each connected component of G minus C, find a maximum independent set by checking every subset of vertices for independence. Form I as a union of maximum independent sets, one from each component.

Let I^* be a maximum independent set of G. The restriction of I^* to one of the connected components formed when C is removed from G can be no larger than the restriction of I to the same component. Thus $|I^*| - |I| = O(n/\sqrt{k(n)})$. Since G is planar, G is four-colorable, and $|I^*| \geq n/4$. Thus $(|I^*| - |I|)/|I^*| = O(1/\sqrt{k(n)})$, and the relative error in the size of I tends to zero with increasing n as long as $k(n)$ tends to infinity with increasing n.

Step 1 of the algorithm requires $O(n \log n)$ time by Theorem 2. Step 2 requires $O(n_i 2^{n_i})$ time on a connected component of n_i vertices. The total time required by Step 2 is thus

$$O\left(\max \left\{ \sum_{i=1}^{n} n_i 2^{n_i} \right| \sum_{i=1}^{n} n_i = n \text{ and } \frac{n}{k(n)} \leq n_i \leq k(n) \right) = O\left(\frac{n}{k(n)} k(n) 2^{k(n)}\right) = O(n 2^{k(n)}).$$

Hence the entire algorithm requires $O(n \cdot \max \{|\log n, 2^{k(n)}|\})$ time. If we choose $k(n) = \log n$, we get an $O(n^2)$-time algorithm with $O(1/\sqrt{\log n})$ relative error. If we choose $k(n) = \log \log n$, we get an $O(n \log n)$ algorithm with $O(1/\sqrt{\log \log n})$ relative error.
Planar Separator Theorem by Lipton and Tarjan

THEOREM:

- Let G be any n-vertex planar graph with nonnegative vertex costs summing to no more than one. Then the vertices of G can be partitioned into three sets A, B, S, such that no edge joins a vertex in A with a vertex in B, neither A nor B has total vertex cost exceeding $2/3$, and S contains no more than $2\sqrt{2}\sqrt{n}$ vertices. Furthermore A, B, S can be found in $O(n)$ time.

For equal cost vertices, this becomes:

- Let G be any n-vertex planar graph. Then the vertices of G can be partitioned into three sets A, B, S, such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than $2n/3$ vertices, and S contains no more than $2\sqrt{2}\sqrt{n}$ vertices.
Planar Separator Theorem:

- Lemma 1: Let \(G \) be any planar graph. Shrinking any edges of \(G \) to a single vertex preserves planarity.

- Corollary 1. Let \(G \) be any planar graph. Shrinking any connected subgraph of \(G \) to a single vertex preserves planarity.

- Lemma 2: Let \(G \) be any planar graph with non-negative vertex costs summing to no more than one. Suppose \(G \) has a spanning tree of radius \(r \). Then the vertices of \(G \) can be partitioned into three sets \(A, B, C \), such that no edge joins a vertex in \(A \) with a vertex in \(B \), neither \(A \) nor \(B \) has total cost exceeding \(2/3 \), and \(C \) contains no more than \(2r + 1 \) vertices, one the root of the tree.

- Lemma 3: Let \(G \) be any \(n \)-vertex connected planar graph having nonnegative vertex costs summing to no more than one. Suppose that the vertices of \(G \) are partitioned into levels according to their distance from some vertex \(v \), and that \(L(l) \) denotes the number of vertices on level \(l \). If \(r \) is the maximum distance of any vertex from \(v \), let \(r + 1 \) be an additional level containing no vertices. Given any two levels \(l_1 \) and \(l_2 \) such that levels 0 through \(l_1 - 1 \) have total cost not exceeding \(2/3 \) and levels \(l_2 + 1 \) through \(r + 1 \) have total cost not exceeding \(2/3 \), it is possible to find a partition \(A, B, C \) of the vertices of \(G \) such that no edge joins a vertex in \(A \) with a vertex in \(B \), neither \(A \) nor \(B \) has total cost exceeding \(2/3 \), and \(C \) contains no more than \(L(l_1) + L(l_2) + \max \{0, 2(l_2 - l_1 - 1)\} \) vertices.
Proof. Assume G is connected. Partition the vertices into levels according to their
distance from some vertex v. Let $L(l)$ be the number of vertices on level l. If r is the
maximum distance of any vertex from v, define additional levels -1 and $r + 1$ containing
no vertices.

Let l_1 be the level such that the sum of costs in levels 0 through $l_1 - 1$ is less
than $1/2$, but the sum of costs in levels 0 through l_1 is at least $1/2$. (If no such l_1 exists,
the total cost of all vertices is less than $1/2$, and $B = C = \emptyset$ satisfies the theorem.) Let
k be the number of vertices on levels 0 through l_1. Find a level l_0 such that $l_0 \leq l_1$ and
$|L(l_0)| + 2(l_1 - l_0) \leq 2\sqrt{k}$. Find a level l_2 such that $l_1 + 1 \leq l_2$ and $|L(l_2)| + 2(l_2 - l_1 - 1) \leq 2\sqrt{n - k}$. If two such levels exist, then by Lemma 3 the vertices of G
can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither
A nor C has cost exceeding $2/3$, and C contains no more than $2(\sqrt{k} + \sqrt{n - k})$ vertices.
But $2(\sqrt{k} + \sqrt{n - k}) \leq 2(\sqrt{n/2} + \sqrt{n/2}) = 2\sqrt{2n}$. Thus the theorem holds if suitable
levels l_0 and l_2 exist.

Suppose a suitable level l_0 does not exist. Then, for $i \leq l_1$, $L(i) \geq 2\sqrt{k} - 2(l_1 - i)$.
Since $L(0) = 1$, this means $1 \geq 2\sqrt{k} - 2l_1$, and $l_1 + 1/2 \geq \sqrt{k}$. Thus $l_1 = [l_1 + 1/2] \geq
[\sqrt{k}]$, and

$$k = \sum_{i=0}^{l_1} L(i) \geq \sum_{i=l_1-[\sqrt{k}]}^{l_1} 2\sqrt{k} - 2(l_1 - i) \geq 4\sqrt{k} - 2[\sqrt{k}])([\sqrt{k}] + 1)/2 \geq \sqrt{k}([\sqrt{k}] + 1) > k.$$

This is a contradiction. A similar contradiction arises if a suitable level l_2 does not
exist. This completes the proof for connected graphs.
Now suppose G is not connected. Let G_1, G_2, \cdots, G_k be the connected components of G, with vertex sets V_1, V_2, \cdots, V_k, respectively. If no connected component has total vertex cost exceeding $1/3$, let i be the minimum index such that the total cost of $V_1 \cup V_2 \cup \cdots \cup V_i$ exceeds $1/3$. Let $A = V_1 \cup V_2 \cup \cdots \cup V_i$, let $B = V_{i+1} \cup V_{i+2} \cup \cdots \cup V_k$, and let $C = \emptyset$. Since i is minimum and the cost of V_i does not exceed $1/3$, the cost of A does not exceed $2/3$. Thus the theorem is true.

If some connected component (say G_i) has total vertex cost between $1/3$ and $2/3$, let $A = V_i$, $B = V_1 \cup \cdots \cup V_{i-1} \cup V_{i+1} \cup \cdots \cup V_k$, and $C = \emptyset$. Then the theorem is true.

Finally, if some connected component (say G_i) has total vertex cost exceeding $2/3$, apply the above argument to G_i. Let A^*, B^*, C^* be the resulting partition. Let A be the set among A^* and B^* with greater cost, let $C = C^*$, and let B be the remaining vertices of G. Then A and B have cost not exceeding $2/3$ and the theorem is true.

This proves the theorem for all planar graphs. In all cases the separator C is either empty or contained in only one connected component of G. □
References:
