Problem solving and search

Chapter 3
Outline

♦ Problem-solving agents
♦ Problem types
♦ Problem formulation
♦ Example problems
♦ Basic search algorithms
On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
A problem is defined by four items:

initial state e.g., “at Arad”

successor function $S(x) = \text{set of action–state pairs}$
 e.g., $S(\text{Arad}) = \{\langle \text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \rangle, \ldots \}$

goal test, can be
 explicit, e.g., $x = \text{“at Bucharest”}$
 implicit, e.g., $\text{NoDirt}(x)$

path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 $c(x, a, y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state
Selecting a state space

Real world is absurdly complex
 ⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set
 of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
 must get to some real state “in Zerind”

(Abstract) solution =
 set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
Example: vacuum world state space graph

- states??
- actions??
- goal test??
- path cost??
Example: vacuum world state space graph

states: integer dirt and robot locations (ignore dirt *amounts* etc.)
actions
goal test
path cost
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??
Example: vacuum world state space graph

- **states**: integer dirt and robot locations (ignore dirt amounts etc.)
- **actions**: Left, Right, Suck, NoOp
- **goal test**: no dirt
- **path cost**
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)

actions??: *Left, Right, Suck, NoOp*

goal test??: no dirt

path cost??: 1 per action (0 for *NoOp*)
Example: The 8-puzzle

Start State

Goal State

states??
actions??
goal test??
path cost??
Example: The 8-puzzle

Start State

```
7  2  4  
5   6   
8  3  1  
```

Goal State

```
1  2  3  
4  5  6  
7  8   
```

states??: integer locations of tiles (ignore intermediate positions)

actions??

goal test??

path cost??
Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??
Example: The 8-puzzle

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Start State

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Goal State

states: integer locations of tiles (ignore intermediate positions)

actions: move blank left, right, up, down (ignore unjamming etc.)

goal test: = goal state (given)

path cost
Example: The 8-puzzle

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Start State

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Goal State

states??: integer locations of tiles (ignore intermediate positions)

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
Example: robotic assembly

states: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions: continuous motions of robot joints

goal test: complete assembly with no robot included!

path cost: time to execute
Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end
Tree search example
Tree search example
Tree search example
Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
 includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.
Implementation: general tree search

```plaintext
function Tree-Search(problem, fringe) returns a solution, or failure
    fringe <- Insert(Make-Node(Initial-State[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node <- Remove-Front(fringe)
        if Goal-Test(problem, State[node]) then return node
        fringe <- InsertAll(Expand(node, problem), fringe)
```

```plaintext
function Expand(node, problem) returns a set of nodes
    successors <- the empty set
    for each action, result in Successor-Fn(problem, State[node]) do
        s <- a new Node
        Parent-Node[s] <- node; Action[s] <- action; State[s] <- result
        Path-Cost[s] <- Path-Cost[node] + Step-Cost(node, action, s)
        Depth[s] <- Depth[node] + 1
        add s to successors
    return successors
```
A strategy is defined by picking the **order of node expansion**

Strategies are evaluated along the following dimensions:

- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of

- b—maximum branching factor of the search tree
- d—depth of the least-cost solution
- m—maximum depth of the state space (may be ∞)
Uninformed strategies use only the information available in the problem definition.

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Diagram of the search process:

- **A** is the root node.
- **B** and **C** are the children of **A**.
- **D**, **E**, **F**, and **G** are the children of **B** and **C**.

The search process follows the nodes in the order they are added to the queue, moving from the root to the leaves.
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete??
Properties of breadth-first search

Complete? Yes (if b is finite)

Time??
Properties of breadth-first search

Complete
Yes (if b is finite)

Time
$1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space
Properties of breadth-first search

Complete Yes (if \(b \) is finite)

Time \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}) \), i.e., exp. in \(d \)

Space \(O(b^{d+1}) \) (keeps every node in memory)

Optimal
Properties of breadth-first search

Complete? Yes (if b is finite)

Time? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space? $O(b^{d+1})$ (keeps every node in memory)

Optimal? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.
Uniform-cost search

Expand least-cost unexpanded node

Implementation:
\[fringe = \text{queue ordered by path cost, lowest first} \]

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost \(\geq \epsilon \)

Time?? \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{C^*/\epsilon}) \)
where \(C^* \) is the cost of the optimal solution

Space?? \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{C^*/\epsilon}) \)

Optimal?? Yes—nodes expanded in increasing order of \(g(n) \)
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \text{LIFO queue, i.e., put successors at front}\)

Depth-first search

Expand deepest unexpanded node

Implementation:

\(\text{fringe} = \text{LIFO queue, i.e., put successors at front} \)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

![Depth-first search diagram](image)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

\textit{fringe} = LIFO queue, i.e., put successors at front

![Diagram of a depth-first search tree](image)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 \[\Rightarrow \] complete in finite spaces

Time??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? \(O(b^m)\): terrible if \(m\) is much larger than \(d\)
but if solutions are dense, may be much faster than breadth-first

Space??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path

⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d

but if solutions are dense, may be much faster than breadth-first

Space?? $O(bm)$, i.e., linear space!

Optimal??
Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time? \(O(b^m) \): terrible if \(m \) is much larger than \(d \)
but if solutions are dense, may be much faster than breadth-first

Space? \(O(bm) \), i.e., linear space!

Optimal? No
Depth-limited search

= depth-first search with depth limit \(l \),
i.e., nodes at depth \(l \) have no successors

Recursive implementation:

```plaintext
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
  Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
  cutoff-occurred? ← false
  if Goal-Test(problem, State[node]) then return node
  else if Depth[node] = limit then return cutoff
  else for each successor in Expand(node, problem) do
    result ← Recursive-DLS(successor, problem, limit)
    if result = cutoff then cutoff-occurred? ← true
    else if result ≠ failure then return result
  if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution
inputs: problem, a problem
for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
end
Iterative deepening search $l = 0$
Iterative deepening search $l = 1$
Iterative deepening search $l = 2$

Limit = 2

Chapter 3
Iterative deepening search $l = 3$
Properties of iterative deepening search

Complete??
Properties of iterative deepening search

Complete?? Yes

Time??
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space?
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal??
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right leaf:

\[
\begin{align*}
N(\text{IDS}) &= 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \\
N(\text{BFS}) &= 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100
\end{align*}
\]

IDS does better because other nodes at depth \(d\) are not expanded

BFS can be modified to apply goal test when a node is generated
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(b^{m})</td>
<td>(b^{l})</td>
<td>(b^{d})</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

function Graph-Search(*problem, fringe*) **returns** a solution, or failure

- *closed* ← an empty set
- *fringe* ← Insert(Make-Node(Initial-State[*problem*]), fringe)

loop do
 - if *fringe* is empty then return failure
 - *node* ← Remove-Front(*fringe*)
 - if Goal-Test(*problem, State[node]*) then return *node*
 - if State[*node*] is not in *closed* then
 - add State[*node*] to *closed*
 - *fringe* ← InsertAll(Expand(*node, problem*), *fringe*)

end
Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search