Guest Editors’ Foreword

This issue of *Discrete & Computational Geometry* is devoted to the papers presented at the Special Session on Discrete and Computational Geometry and Graph Drawing, at the 963rd Sectional Meeting of the American Mathematical Society, in Columbia, South Carolina, on March 16–18, 2001.

The special session focused on the intersection of Graph Theory and Discrete and Computational Geometry. Significant progress has been made during the past 10 years in addressing and answering many fundamental questions that arise in discrete and computational geometry. Some of the underlying tools have been graph theoretical in nature, and it is likely that the better understanding of many geometric problems will depend on developing new graph theoretical concepts. Such developments will benefit the communities that work in discrete mathematics, in computational geometry, and in the theory of computing.

This issue contains 16 papers. The papers fall into two categories. Some papers study classical problems in combinatorial geometry, including the number of distinct distances, the number of incidences between points and curves, the number of occurrences of the diameter in a convex polygon, the Orchard Problem, the Gallai–Sylvester theorem, and the Erdős–Szekeres theorem. Other papers focus on computational issues, such as recognizing string graphs, recognizing visibility graphs, untangling polygons, geometric pattern matching, polygon sweeping, and problems in computational topology.

We thank the American Mathematical Society for allowing us to organize the special session and for allowing us to publish the resulting papers. Special thanks to the Editors-in-Chief of *Discrete and Computational Geometry*, Jacob E. Goodman and Richard Pollack, for devoting a special issue to the outcome of our special session. Special thanks to Warren Burggren Dean of the College of Arts and Sciences at the University of North Texas, who provided funds for our session.

Farhad Shahrokhi
László Székely