Query Optimization

Query Processing

Q → Query Plan

Focus: Relational System

- Others?

Example

Select B,D
From R,S
Where R.A = "c" ∧ S.E = 2 ∧ R.C=S.C
Relational Algebra can be used to describe plans...

Ex: Plan I

\[\Pi_{B,D} \sigma_{R.A = 'c'} \land S.E = 2 \land R.C = S.C } \]

OR: \[\Pi_{B,D} [\sigma_{R.A = 'c'} \land S.E = 2 \land R.C = S.C } (RXS)] \]

Another idea:

Plan II

\[\Pi_{B,D} \sigma_{R.A = 'c'} \land \sigma_{S.E = 2}] \]

natural join

Example: Estimate costs

L.Q.P

P1 P2 ..., Pn

C1 C2 ..., Cn

Pick best!
Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?

Rules: Natural joins & cross products & union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]

Note:
- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:
Rules: Natural joins & cross products & union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]
\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]
\[R \cup S = S \cup R \]
\[R \cup (S \cup T) = (R \cup S) \cup T \]

Rules: Selects

\[\sigma_{p_1 \land p_2}(R) = \sigma_{p_1 \land \sigma_{p_2}(R)} \]
\[\sigma_{p_1 \lor p_2}(R) = \sigma_{p_1}(R) \cup \sigma_{p_2}(R) \]

Rules: Project

Let: \(X = \) set of attributes
\(Y = \) set of attributes
\(XY = X \cup Y \)
\[\pi_{XY}(R) = \pi_{X}(\pi_{Y}(R)) \]
Let p = predicate with only R attribs
q = predicate with only S attribs
m = predicate with only R,S attribs

$$\sigma_p (R \bowtie S) = [\sigma_p (R) \bowtie S]$$

$$\sigma_q (R \bowtie S) = R \bowtie [\sigma_q (S)]$$

Some Rules can be Derived:

$$\sigma_{p\land q} (R \bowtie S) =$$

$$\sigma_{p\land m} (R \bowtie S) =$$

$$\sigma_{p\land q} (R \bowtie S) =$$

$$\sigma_{p\land m} (R \bowtie S) = \sigma_m [(\sigma_p R) \bowtie (\sigma_q S)]$$

$$\sigma_{p\land q} (R \bowtie S) = [\sigma_p (R \bowtie S)] \cup [R \bowtie (\sigma_q S)]$$
Rules: π, σ combined

Let x = subset of R attributes
z = attributes in predicate P
(subset of R attributes)

\[\pi_x[\sigma_p(R)] = \pi_x[\sigma_p(\pi_x(R))] \]

Let x = subset of R attributes
y = subset of S attributes
z = intersection of R, S attributes

\[\pi_{xy}(R \bowtie S) = \pi_{xy}\{(\pi_{xz}(R) \bowtie \pi_{yz}(S))\} \]

\[\pi_{xy}\{\sigma_p(R \bowtie S)\} = \pi_{xy}\{\sigma_p(\pi_{xz}(R) \bowtie \pi_{yz}(S))\} \]

\[z' = z \cup \{\text{attributes used in } P\} \]
Rules for \(\sigma, \pi\) combined with \(X\)

similar...

e.g., \(\sigma_p (R \times S) = ?\)

\[\sigma_p (R \cup S) = \sigma_p (R) \cup \sigma_p (S)\]

\[\sigma_p (R - S) = \sigma_p (R) - S = \sigma_p (R) - \sigma_p (S)\]

Rules \(\sigma, U\) combined:

\[\sigma_p (R \cup S) = \sigma_p (R) \cup \sigma_p (S)\]

\[\sigma_p (R - S) = \sigma_p (R) - S = \sigma_p (R) - \sigma_p (S)\]

Which are “good” transformations?

- \(\sigma_{p1 \land p2} (R) \rightarrow \sigma_{p1} [\sigma_{p2} (R)]\)
- \(\sigma_p (R \bowtie S) \rightarrow [\sigma_p (R)] \bowtie S\)
- \(R \bowtie S \rightarrow S \bowtie R\)
- \(\pi_x [\sigma_p (R)] \rightarrow \pi_x \{\sigma_p [\pi_{xz} (R)]\}\)
Conventional wisdom: do projects early

Example: $R(A,B,C,D,E)$ \(x=E \)

\[P: (A=3) \land (B=\text{"cat"}) \]

\[\pi_x \{ \sigma_p (R) \} \text{ vs. } \pi_E \{ \sigma_p(\pi_{AB}E(R)) \} \]

But what if we have A, B indexes?

\(B = \text{"cat"}, A=3 \)

Intersect pointers to get pointers to matching tuples

Bottom line:
- No transformation is always good
- Usually good: early selections
• Estimating cost of query plan

(1) Estimating size of results

(2) Estimating # of IOs

Estimating result size

- Keep statistics for relation R
 - T(R): # tuples in R
 - S(R): # of bytes in each R tuple
 - B(R): # of blocks to hold all R tuples
 - V(R, A): # distinct values in R for attribute A

Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
</tr>
</tbody>
</table>

A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

T(R) = 5 S(R) = 37
V(R,A) = 3 V(R,C) = 5
V(R,B) = 1 V(R,D) = 4
Size estimates for W = R1 x R2

\[T(W) = T(R1) \times T(R2) \]
\[S(W) = S(R1) + S(R2) \]

Size estimate for W = σA=a (R)

\[S(W) = S(R) \]
\[T(W) = ? \]

Example

\[R \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat 1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat 1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog 1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog 1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat 1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

\[W = \sigma z=val(R) (R) \]
\[T(W) = \frac{T(R)}{V(R,z)} \]
Assumption:
Values in select expression \(Z = \text{val} \) are uniformly distributed over possible \(V(R,Z) \) values.

Alternate Assumption:
Values in select expression \(Z = \text{val} \) are uniformly distributed over domain with \(\text{DOM}(R,Z) \) values.

Example
\[
\begin{array}{cccc}
\text{A} & \text{B} & \text{C} & \text{D} \\
\text{cat} & 1 & 10 & a \\
\text{cat} & 1 & 20 & b \\
\text{dog} & 1 & 30 & a \\
\text{dog} & 1 & 40 & c \\
\text{bat} & 1 & 50 & d \\
\end{array}
\]

Alternate assumption
\[
\begin{align*}
V(R,A) &= 3 & \text{DOM}(R,A) &= 10 \\
V(R,B) &= 1 & \text{DOM}(R,B) &= 10 \\
V(R,C) &= 5 & \text{DOM}(R,C) &= 10 \\
V(R,D) &= 4 & \text{DOM}(R,D) &= 10 \\
\end{align*}
\]

\[W = \sigma_{z=\text{val}(R)}(R) \quad T(W) = ? \]
\[C = \text{val} \Rightarrow T(W) = (\frac{1}{10})^1 + (\frac{1}{10})^1 + \ldots \]
\[= (\frac{5}{10}) = 0.5 \]

\[B = \text{val} \Rightarrow T(W) = (\frac{1}{10})^5 + 0 + 0 = 0.5 \]

\[A = \text{val} \Rightarrow T(W) = (\frac{1}{10})^2 + (\frac{1}{10})^2 + (\frac{1}{10})^1 \]
\[= 0.5 \]

Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Alternate assumption

\[V(R, A) = 3 \quad \text{DOM}(R, A) = 10 \]
\[V(R, B) = 1 \quad \text{DOM}(R, B) = 10 \]
\[V(R, C) = 5 \quad \text{DOM}(R, C) = 10 \]
\[V(R, D) = 4 \quad \text{DOM}(R, D) = 10 \]

\[W = \sigma_{z = \text{val}(R)} \quad T(W) = \frac{T(R)}{\text{DOM}(R, Z)} \]

Selection cardinality

\[SC(R, A) = \text{average # records that satisfy equality condition on } R.A \]
\[= \frac{T(R)}{V(R, A)} \]

\[SC(R, A) = \left\{ \begin{array}{l}
\frac{T(R)}{V(R, A)} \\
\frac{T(R)}{\text{DOM}(R, A)}
\end{array} \right. \]
What about $W = \sigma_{z \geq \text{val}}(R)$?

$T(W) = ?$

- **Solution #1:**
 $T(W) = T(R)/2$

- **Solution #2:**
 $T(W) = T(R)/3$

Solution #3: Estimate values in range

Example R

<table>
<thead>
<tr>
<th>Z</th>
<th>$V(R,Z)=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Min}=1$</td>
<td>$W = \sigma_{z \geq 15}(R)$</td>
</tr>
<tr>
<td>$\text{Max}=20$</td>
<td></td>
</tr>
</tbody>
</table>

$f = \frac{20-15+1}{20-1+1} = \frac{6}{20}$ (fraction of range)

$T(W) = f \times T(R)$

Equivalently:

$f \times V(R,Z) = \text{fraction of distinct values}$

$T(W) = \left[f \times V(Z,R)\right] \times T(R) = f \times T(R) \times V(Z,R)$
Size estimate for \(W = R_1 \bowtie R_2 \)

Let \(x \) = attributes of \(R_1 \)
\(y \) = attributes of \(R_2 \)

Case 1
\[X \cap Y = \emptyset \]
Same as \(R_1 \times R_2 \)

Case 2
\[W = R_1 \bowtie R_2 \quad X \cap Y = A \]

Assumption:
\[V(R_1,A) \leq V(R_2,A) \Rightarrow \text{Every A value in } R_1 \text{ is in } R_2 \]
\[V(R_2,A) \leq V(R_1,A) \Rightarrow \text{Every A value in } R_2 \text{ is in } R_1 \]

"containment of value sets"

Computing \(T(W) \) **when** \(V(R_1,A) \leq V(R_2,A) \)

Take 1 tuple

1 tuple matches with \(T(R_2) \) tuples...
\[V(R_2,A) \]

so
\[T(W) = \frac{T(R_2)}{V(R_2,A)} \times T(R_1) \]
\[V(R1,A) \leq V(R2,A) \quad T(W) = \frac{T(R2) T(R1)}{V(R2,A)} \]

\[V(R2,A) \leq V(R1,A) \quad T(W) = \frac{T(R2) T(R1)}{V(R1,A)} \]

[A is common attribute]

In general
\[W = R1 \times R2 \]
\[T(W) = \frac{T(R2) T(R1)}{\max\{V(R1,A), V(R2,A)\}} \]

Case 2

with alternate assumption

Values uniformly distributed over domain

This tuple matches \(T(R2) / \text{DOM}(R2,A) \) so
\[T(W) = \frac{T(R2) T(R1)}{\text{DOM}(R2,A)} = \frac{T(R2) T(R1)}{\text{DOM}(R1,A)} \]
Assume the same
In all cases:
\[S(W) = S(R1) + S(R2) - S(A) \]

size of attribute A