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ABSTRACT

This paper focuses on one important type of geo-streaming
data - point geo-streams. Many interesting applications re-
quire selected discrete points with similar observations to
be clustered according to spatial proximity and further ele-
vated into higher-level spatial regions. Querying streaming
point clusters as regions directly in a geo-stream database
has many benefits, but is also very challenging. We pro-
pose two query optimization strategies, namely semantics-
based optimization and incremental optimization for answer-
ing queries involving both point geo-streams and static data
set. The experimental results on a streaming meteorological
data set demonstrate the effectiveness and the efficiency of
the query processing techniques. Compared with the base-
line methods, our optimization methods can reduce the total
execution time by more than an order of magnitude.

Categories and Subject Descriptors

H.2.4 [Systems]: Query processing; H.2.8 [Database Ap-
plications|: Spatial databases and GIS

General Terms
Algorithms

Keywords

Geo-stream, spatial clustering, query optimization

1. INTRODUCTION

With the advent of sensory and communication technolo-
gies, the volume of real-time streaming data produced by
sensor networks is staggeringly large and growing rapidly.
Traditional sensor networks such as those managed by the
National Weather Service (NWS) [23] are collecting mete-
orological observations across the country at progressively
finer spatial and temporal granularities. The increasingly
popular location enabled devices are continuously producing
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large volumes of streaming data — complementary to those
produced by traditional automobile sensors, e.g. loop detec-
tors, and amenable to traffic analysis. The development of
MEMS (Micro-Electro-Mechanical Systems) and nano tech-
nology promises miniature and dust-like intelligent sensors
that can be scattered around to self-organize into a network
to measure just about everything that you can imagine.
While stream databases such as [4, 1, 5, 2] and sensor
databases such as [16, 7, 3] have successfully adopted some

and reinvented the other salient features of traditional databases

(e.g. query language and query processing strategy) to fit
the new scenarios, insufficient attention has been paid to a
large class of streaming data - geo-streams that are produced
by geo-sensor networks monitoring spatially and temporally
continuous phenomena such as flooding and traffic jam.

In this paper, we focus on one important type of geo-
streaming data, namely, point geo-streams. Many inter-
esting applications, e.g. weather and traffic, often require se-
lected discrete points with similar observations (water level,
vehicle speed, wind speed, etc.) to be clustered according
to spatial proximity and further elevated into higher-level
spatial objects, e.g. regions’.

Traditionally, cluster analysis and polygonization (i.e., con-
verting clusters to polygons) are considered as mining pro-
cesses and are separated from a database system. However,
there are several important benefits to query streaming point
clusters as regions directly in a geo-stream database. First
of all, many spatial databases have built-in functions to sup-
port a variety of operations on regions. By querying clusters
as regions, we avoid the effort to reinvent many geometric
functions. Secondly, regions can be more efficiently com-
puted and stored than point clusters (e.g., the representa-
tion of a polygon only requires all of its boundary vertices).
Last but not least, regions can better characterize certain
phenomena (such as flooding zones) than points in many
GIS applications.

Efficiently querying point clusters as regions is very chal-
lenging in streaming applications. Clustering algorithm is
usually beyond linear time complexity. Elevating point clus-
ters to polygons is non-trivial except for simple polygons or
convex hulls. Continuously performing the clustering and
polygonization for point clusters is unacceptable in most real
time applications.

In our previous papers [14, 29], We have proposed a data-
type-based approach [14] to uniformly represent geo-streams

!Please note that we use region and polygon interchange-
ably in this paper for writing convenience. However, strictly
speaking a region is defined as a set of polygons.



with and without extended spatial extents. We also pro-
posed to generalize GROUP BY to CLUSTER BY in SQL
to allow static points to be aggregated into static regions
and then participate in spatial queries. This paper builds
on top of our existing work, and focuses on query optimiza-
tion strategies for querying streaming point clusters as re-
gions. Specifically, the paper brings together the following
contributions:

1. We propose a novel semantics-based query optimiza-
tion algorithm for processing queries involving stream-
ing regions abstracted from point clusters;

2. We further develop an incremental algorithm to opti-
mize queries on streaming windows;

3. We perform experimental evaluation on a real stream-
ing meteorological data set to demonstrate the effec-
tiveness and the efficiency of the query optimization
techniques. Compared with the baseline methods, our
optimization strategies can reduce the total execution
time by more than an order of magnitude.

The rest of the paper is organized as follows: Section 2
elaborates the motivation and formulates the problem def-
inition. Section 3 proposes the semantics-based query op-
timization algorithm as well as the incremental query op-
timization strategy. Experiment results are shown in sec-
tion 4. Section 6 summarizes the paper and discusses future
work. Finally we review the related work in Section 5.

2. MOTIVATION AND PROBLEM FORMU-
LATION

In this section, we first show a motivating example, and
then formulate the problem definition.

Ezample 1 (Motivating Scenario: Flood Damage
Analysis): During and after a flood, the city hydrologic
information center needs to continuously monitor and ana-
lyze the flooding and its damage. Surface water data in the
format of (location,time,waterLevel) can be obtained by a
variety of sensors, such as a network of submersible pressure
transducers. A location is considered flooded if it has a sur-
face water level above a user-given threshold d. A flooding
zone is formed by elevation of flooded point clusters into re-
gions. A spatial database is used to store the county and
house information in two separate tables. We list three chal-
lenging queries.

e Q1: Continuously list the counties traversed by a flood
in the past 2 days.

e Q2: Continuously return the areas(sizes) of the flood-
ing regions.

e Q3: Continuously list the phone numbers of all the
houses within 3 miles of the flooding water front.

Assuming we have the following table schemas, the above
queries cannot be easily answered without complicated clus-
tering and polygonization process. This is because there is
an inherent mismatch between discrete point-based obser-
vations (e.g. waterLevel) and continuous phenomenon (e.g.
flood).

waterLevel(location: point, waterLevel: streaming real)
county(name: string, extent: region)
house(owner: string, phone: string, extent: point)

However, if the geo-stream database supports the eleva-
tion of point clusters as flooding regions, i.e., we have the
following schema, the above queries can be much more in-
tuitively expressed and answered.

flood(floodname: string, extent: streaming region)

We may use the syntax proposed in our previous paper [14,
29] to express query Q1, Q2 and Q3.

Q1 SELECT c.name
FROM flood f, county c
WHERE intersect(f.extent[past 2 days], c.extent)

Q2. SELECT name, extent[now], area(extent[now])
FROM flood

Q3. SELECT h.phone
FROM flood f, house h
WHERE distance(f.extent[now], h.exent) < 3

The above example can be generalized to the following
query that involves streaming regions (e.g. flood) and static
data set (e.g., county and house).

Q: SELECT Streaming/non-streaming attributes,
aggregate function
FROM Streaming regions, static dataset

WHERE Streaming spatial predicates

The rest of the paper will focus on how to optimize this
type of query. More formally, the problem is defined as the
following:

Given: A set of point streaming observations S (location:
point, reading: streaming real).

Find: Answers to query @ that involves streaming regions
S, formed by clusters of points in S above a user specified
threshold d and static regions.

Objective: Optimize the query execution in terms of
CPU and IO costs.

3. QUERY PROCESSING STRATEGIES

To process real time point cluster streams and answer con-
tinuous queries over them, we need efficient data structures
and query processing mechanisms. In this section, we will
use the motivating query Q1 in Section 2 to illustrate query
processing strategies. First, we will go through the basic
data structure and a naive query processing method. Then
our semantics-based and incremental optimization strategies
are proposed. At the end of the section, we will discuss how
our approaches can be applied in a general context.

3.1 Basic Data Structure

Consider a geo-stream S representing point observations
in our context. Without loss of generality, we assume that
the schema of S is of the format: S(reading: streaming
value, extent: point), where extent is a static point data
type with two component = and y in certain reference co-
ordinate framework (e.g. longitude and latitude, or relative
locations).



In most queries, WHERE statement is used to apply boolean
conditions in order to select a subset of the original streams
emitted by discrete sensor points. We assume that memory
is enough to hold all the real time streaming data of recent
sliding window. At each time slice, a different set of points
may be selected to fulfill the query, therefore it is desirable to
have a memory-based indexing structure to efficiently access
each point.

We maintain a doubly linked list for all the points. Each
point is inserted into the doubly linked list based on the as-
cending order of x coordinate, and then on the ascending
order of y coordinate when the points have equal values for
x coordinate. However, locating an arbitrary point in the
list still requires a linear scan from the beginning or end of
the doubly linked list. Therefore, in addition, we maintain
a sparse index over x coordinates. Thus, the whole space
is divided into equally sized stripes according to the x co-
ordinates. There is a single entry in the sparse index for
each stripe pointing to the first point in the linked list that
appears in that stripe. Each point in the list is also as-
sociated with a sequence of timestamps, e.g. (to,t2, ..., tw),
which contains all the timestamps when data emitted by the
point satisfies the selection criteria. New timestamps are ap-
pended to the end of the sequence, and expired timestamps
are removed from the beginning of the sequence. Thus
the timestamp sequence is incrementally updated and has
a maximum size of query window size w. In the application
where sensors are static (such as the example queries), sort-
ing and indexing only need to be performed once, while the
timestamp sequence is updated as data streams come in.
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Figure 1: Data Sorting and Indexing
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Ezxzample 2(Data Sorting and Indexing) Figure 1 shows
an illustrative example of the above data sorting and index-
ing mechanism. Each entry in the sparse index points to the
first point appearing in that stripe. The sequence of num-
bers associated with each point contains all the timestamps
in the query window when reading from that point meets
the selection criteria.

Please note that the basic data structure is independent of
our query optimization strategies that are introduced later.
In the scenarios where sensors are moving, we may need to
use some moving object indexing [20, 19]. The details of
these indexing methods are beyond the scope of this paper.

3.2 Naive Query Processing

A naive query processing approach applies clustering al-
gorithm and polygonization algorithm to aggregate/elevate
point observations as regions at each time slice. The resul-
tant streaming regions can then participate in queries di-
rectly. However, both clustering and polygonization opera-
tions are computationally expensive, which limits the feasi-

bility of the approach in processing geo-streams. We pro-
pose a straightforward approach with basic optimizations
and then compare it with our semantics-based and incre-
mental query optimization methods later.

Various clustering methods can be performed on point
data. For example, DBSCAN [9] identifies a number of clus-
ters from a set of points using the estimated density distribu-
tion of points. Density-based algorithms fit our applications
better because they identify arbitrary shaped clusters. The
original DBSCAN algorithm has two parameters: maximum
radius of the neighborhood Eps and minimum number of
points MinPts in an Eps-neighborhood of any point. The
algorithm starts with an arbitrary point p, and retrieves all
points whose distance to p is no more than Eps. If the num-
ber of such points is larger than MinPts, p is considered
a core point of a cluster. The density-reachable points of p
are points within Eps of P, and are either border points or
core points depending on whether they have enough points
around them. Otherwise p may be a noise point or border
point of some other cluster. This process iterates until all
the points are visited. Paper [9] provides more details of the
algorithm.

The spatial clusters generated in the clustering step need
to be elevated into regions, which then participate in queries
involving other geo-streams and/or static spatial datasets.
Paper [15] provides one such method. However, this method
is only for visualization purposes and does not compute the
sequence of the vertices that constitute the resultant poly-
gons. Therefore we go one step further to obtain the ordered
edge sequences for the resultant regions. Briefly, we first
construct delaunay triangulations(DT) over all the border
points in each cluster respectively. During the DT construc-
tion, we also record the length of each edge. Using the av-
erage length of all the edges for a particular cluster, we may
heuristically remove all the edges that are longer than the
average length (with a tuning factor «) because these edges
are unlikely to be the boundary of the resultant regions.
Then we remove inner edges of the polygon by deleting all
edges that are shared by more than one triangulations. Fi-
nally we start from one arbitrary edge e0 and continue to
another edge that share the same vertex with e0. This pro-
cess iterates until a cycle is formed. We then start with
another unvisited edge until all the edges have been traced.

Let S, (name: string, extent: streaming region) represent
the streaming regions; S, may participate in queries in dif-
ferent ways. For example, Query Q1 involves joining S (i.e.
flood) with a static spatial relation R(i.e. county) on their
extent attributes. We use query Q1 to illustrate the algo-
rithms and discuss other query types later in this section.
We may use the following query processing strategies:

e Linear Scan Join Since every time slice of S, for cur-
rent window is in memory, we perform a linear scan on
R. For each tuple r in each retrieved block of R, we
check every snapshot of S, to see whether any region
intersects the extent of r. The results from all snap-
shots can be used to determine r’s eligibility as the
returned query answer. Then we continue with the
next tuple in the block. When a block is consumed,
a new block of R is read into the memory. In this
strategy, R only needs to be linearly scanned once for
the current window, while S, needs to be checked ngr
times, where nr denotes the number of tuples in R.



e Indexed Scan Join An alternative approach is to
compute the bounding box for each individual region
in S,. Then indexes built on static relation R can be
used to limit the number of potential tuples of R to
be retrieved. For each region s in S;, all the tuples
in R that intersect s’s bounding box are retrieved and
tested. The results from all the regions in S, can col-
lectively determine the final query answers for current
window.

3.3 Semantics-based Query Optimization

The above selection-clustering-polygonization approach an-
swers queries by explicitly aggregating and elevating the
points into streaming regions, which may then participate
in queries directly. However, it is often not necessary to
find the actual regions(polygons) to answer the queries. De-
pending on the semantics of the query, answers(or approxi-
mation of answers) may be obtained without clustering and
polygonization process. In this subsection, we will propose
the semantics-based query optimization method for the join
query illustrated in query Q1. The end of the section dis-
cusses how the approach can be applied to other query types.

%% Naive Query
-..- -i Processing TRUE
l Semantics-based Optimization }pscore point p,
random MinPts<=7
point p
E ———— TRUE

Figure 2: Semantics-based Optimization v.s. Naive
Query Processing

Figure 2 compares the semantics-based optimization with
the naive approach in processing one time slice of query Q1.
In naive query processing, points are aggregated and ele-
vated into regions to participate in join queries. Whether
any resultant region s in S, intersects any tuple (polygon
of county) r in R can be determined by calling standard
programming libraries or functions built into the spatial
database.

On the other hand, in the semantics-based optimization
approach, we take the following steps:

1. We first select a random point p from all the points in-
side any polygon r in R. Then we search p’s Eps neigh-
borhood (a circle with center p and radius Eps) to find
all the points close to p. If more than MinPts(number
of points that are enough to from a cluster) neighbor-
ing points are found, we consider p a core point, and
the potential streaming region s in S, is considered
intersecting r at this time snapshot.

2. If p is not a core point, we continue with another point
q in the p’s neighborhood to see whether ¢ is a core
point and p is a border point.

3. If p is neither a core point nor a border point, we mark
p visited and start with another unvisited point inside

r. The process stops as soon as we find one core/border
point inside 7.

4. If we cannot find any core or border points inside r
(either there is no point inside 7, or the points inside
r are not dense enough to form a region), we consider
s not intersecting r at this time slice.

The details of algorithm to determine intersecting condition
in our semantics-based query optimization is formally pre-
sented in Algorithm 1.

Algorithm 1 Intersecting Condition Test Algorithm for
polygon r at time slice to (ICT(r,t0))

1: Compute r’s bounding box BB(r)
2: From original geo-stream S’s snapshot at time to, find
all the points P[i],i = 1 to n that are inside BB(r)

3: for P[i] = P[1] to P[n] do

4:  Compute P[i]’s Eps neighborhood Npj;, with center
P[i] and radius Eps

5 Compute numP1 as number of points inside Npj;

6 if numP1 > MinPts, where MinPts is the minimum
number of points to form a region then

T ICT(r,to) =TRUE

8: Exit

9:  else

10 for Npp;[j] = Nppg[1] to Nppj[numP1] do

11: Compute numP2 as number of points inside

NP[i] m

12: if numP2 > MinPts then

13: ICT(r,to) = TRUE

14: Exit

15: end if

16: end for

17:  end if

18: end for

19: ICT(r,to) = FALSE

Given Algorithm 1, queries that join S, and R over win-
dow w(w = 2 days in Query Q1) can be answered using
Algorithm 2. It processes tuples from R sequentially. Ini-

Algorithm 2 Semantic based Query Processing over cur-
rent window w
1: for each retrieved tuple r from static relation R do

Let t. = NOW
if t. —w < 0 then

Q.append(ICT(r,t.))
else

Q.append(ICT(r,t.))

Q.remove(ICT (r,tc —w — 1))

if Q(j) is TRUE for all j from 0 to w then

Output r as query answer for query Q1

10: end if
11:  end if
12: end for

tially, for each tuple r, every snapshot over window w is
evaluated using Algorithm 1 and the result is appended to
queue Q. When the current window slides, Q’s content is
updated, i.e. the value for the earliest time slice is removed,
and the value for latest time is appended. Then we evalu-
ate the content of @ to produce answers according to the
semantics of the query. For example, when ) contains only
TRUE values, r is considered the answer for query Q1.

3.4 Incremental Optimization



The approaches we have discussed so far observe a snapshot-
based pattern to answer all the queries. However, the tem-
poral continuity of streaming data implies that it may not
be necessary to explicitly evaluate query conditions at each
time slice. For example, to answer query Q1, if we find that
condition at one time snapshot t; is FALSE, we can decide
that query condition over any window w that covers ty is
FALSE. We call ¢ the spoiler (time). We may safely skip
some time snapshots until the current window has passed
the spoiler, as shown in Figure 3. Note that in Figure 3, we
continuously evaluate query conditions starting from cur-
rent time ¢. until we find time {j, at which the condition is
FALSE.

FALSE TRUE TRUE TRUE
L 1 1 1 1 ]
te-w t, te

lskip next t,-(t-w) slices

1 |
tetl i+t 1+w

Figure 3: Illustration of Incremental Optimization
for Query Q1

The process of incremental optimization for query Q1 is
formally given in Algorithm 3.

Algorithm 3 Window based Query Processing for Query
Q1 over current window w

1: for j = 1 to ng, nr is number of tuples in R, j is each
tuple’s id (in memory) do

2: Let t. = Current Time

3: if (tc —w) < tx(j) then

4: DO NOT retrieve tuple r;
5: Exit

6: end if

7:  Retrieve tuple r; from R

8: for t; = t. to t. — w do

9: if ICT (r;,t;) == false then
10: te(§) =t

11: Exit

12: end if

13:  end for

14:  Output r; as the query answer over current window

w
15: end for

Note that in Algorithm 3, we keep spoiler ¢ associated
with each tuple’s id in memory. If the current window has
not passed the ti, that tuple is not retrieved from the disk.
Thus we can save IO cost as well as computation cost (to
test intersecting condition).

Please also note that in Query Q1, we assume the seman-
tics of “intersect” is “intersect for all the time slices”. How-
ever, we can easily adapt the definition of spoiler, as well as
Algorithm 1-3 to support the semantics of “intersect for any
one of the time slices”.

3.5 Optimization for General Query Types

We have illustrated the optimization strategies using query
Q1. To see that these approaches are not ad-hoc, we need to
identify type of queries that our optimization methods can
be applied to.

OBSERVATION 1. Incremental optimization can be applied
to any spatial predicates.

Spatial predicates evaluate the relationship between spa-
tial objects and return “true/false” boolean results. Spa-
tial predicates usually appear in the “WHERE” statement.
OpenGIS specification defines many spatial relationship func-
tions that are predicates, such as Intersect(s), Contain(s),
Disjoint, Touch(es),Overlap(s), Cover(s), Within, Equal(s)
etc. It is easy to see that the incremental optimization
strategies can be applied to any of these predicates. The
spoiler condition and Algorithm 3 can be easily adapted with
minimum modification.

OBSERVATION 2. Semantics-based optimization can be ap-
plied to most spatial predicates and some spatial measure-
ment functions.

By examining the random sampling approach in process-
ing Query 1, we may notice that semantics-based optimiza-
tion can be extended to many other spatial predicates, such
as Intersect(s), Contain(s), Disjoint, Touch(es),Overlap(s),
Cover(s), Equal(s) etc. For example, if we find a core/border
point outside the static data set, we can optimize the queries
to evaluate Contain(s), Touch(es) or Equal(s) conditions
similarly.

Spatial measurement functions evaluate certain properties
of spatial objects (such as distance, area etc.), and return
floating values as the output. Spatial measurement func-
tions usually appear in the “SELECT” statement as aggre-
gate functions. The semantics-based optimization can be
extended to these functions, but requires careful design of
algorithms. For example, to calculate the area of flooding
in query Q2, we may use density and average distance infor-
mation of the points to get the approximate answers. Now
the queue @ in Algorithm 2 becomes a sequence of real num-
bers (instead of booleans), and an additional step needs to be
added to produce the aggregated result over current window
w from @. We plan to address our strategies systematically
by examining FVERY OpenGIS defined spatial predicates
and spatial measurement functions in our future work.

4. EXPERIMENTS

In this section, we will present our experiment results to
demonstrate the effectiveness of our proposed query seman-
tics and efficiency of the optimization strategies.

4.1 Experiment Settings

The geo-stream data used in our experiments is a modi-
fied version of climate data archives provided by University
of Delaware Center for Climatic Research [25]. The archives
contain grid-based temperature and precipitation data with
0.5-degree latitude-longitude resolution. Each grid may be
considered a spatial point data type. We have chosen a
subset of the precipitation data that covers a spatial area
across the United States. (Longitude: —120 ~ —75 Lat-
itude: 30 ~ 50) and temporal period of year 1999. The
stream is fed into the memory with a schema of (precipita-
tion: sreal, extent: point). Figure 5 shows the statistics of
original streaming precipitation data. Most points’ precipi-
tation is within the range of [0,20]. The average precipita-
tion is 54mm. For the static spatial relation, we use a table
state that contains all the states in the U.S.A. generated
from a shape file provided with ESRI ArcGIS software. It is
easy to see that example query Q1 can be directly mapped
to this dataset.
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10000 for query Q1. As can be observed from the figure, the
semantics-based optimization can reduce the computation
” 8000 time substantially. When the selection ratio is high, it can
5 save more than an order of magnitude of computation cost.
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S 4000 cost in the naive query processing.
g From Figure 4 (a) and (b), we may also observe that IO
= 2000 time is a less dominant factor in our experiments. Therefore
the total execution time of semantics-based optimization is
also significantly smaller than the naive query processing.
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Figure 5: Statistics of Original Geo-stream

We measure both the (in memory) computation time and
10 time (which is proportional to the number of 10 block
transfers) for queries over window size w = 5. The re-
sults are generated for different selection ratio v, to test
the scalability of the methods. In measuring the 1O time,
we use “LIMIT n” statement to simulate the memory buffer
used to load the static dataset. Typically the block size is
2K B — 4K B. Based on the size of the static relation state,
we set n = 1 to best simulate the size of one block, which
means each time only one tuple in the state relation is loaded
into memory.

4.2 Experimental Results

4.2.1 Effect of Semantics-based Optimization

Figure 4 shows the effect of semantics-based optimization
on IO time, computation time and total execution time over
one sliding window. The window covers 5 time slices (i.e.
window size w = 5) instead of 2 time slices as in Q1. The
semantics is the same as query Q1. As demonstrated by
Figure 4 (a), both linear scan join and semantics-based op-
timization have stable 10 time regardless of selection ratio
of S, while the IO time for indexed scan join is near lin-
ear to selection ratio. When 7, is high(50%), the IO time
for indexed scan join is nearly 6 times of that of other two
methods. This can be explained by the fact that the static
relation R is always scanned once for the current window in
the other two methods, while R may be scanned multiple
times in the indexed scan join depending on the number of
regions in S,.

Figure 4 (b), on the other hand, demonstrates the effect
of semantics-based query optimization on computation time

As shown in Figure 4 (c), depending on the selection ratio,
the optimization can save the execution time by 2 to more
than 10 times.

4.2.2  Effect of Incremental Optimization

To evaluate the effect of incremental optimization, we per-
form the queries Q1 that covers 5 time slices for each win-
dow. We also let the current window continuously slide un-
til the current time moves 7 time snapshots ahead. The
semantics-based optimization has been built into both non-
incremental and incremental cases.

As shown by Figure 6 (a), incremental optimization can
substantially reduce the IO time. When selection ratio is
relatively low, the IO time can be reduced more than 50%.

The incremental optimization can also improve computa-
tion efficiency on the basis of semantics-based optimization.
As shown in Figure 6 (b), the computation time can be re-
duced by more than 5 times when selection ratio is low. The
total execution time is also significantly reduced by up to 5
times, shown in Figure 6 (c).

Combining semantics-based and incremental optimization,
our strategy can reduce the total execution time by more
than an order of magnitude.

5. RELATED WORK

Traditional database management systems are inadequate

in processing complicated queries over continuous data streams.

New processing paradigms and methods have been proposed
and implemented in several streaming data management sys-
tems [6, 4, 1] to achieve common objectives. However, these
systems treat each stream as the unit of operation. Aggre-
gating points into high-level phenomena is not considered.
Furthermore, there is limited support for spatial data types,
such as evolving regions, and queries involving these types.

A large body of research has been devoted to moving ob-
ject databases [26, 22, 21, 13, 19]. Many efficient index-
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Figure 6: Effect of Incremental Optimization

ing methods have been proposed. For example, a time-
parameterized R-Tree(TPR Tree) is proposed in [26] to in-
dex the positions of moving objects whose moving pattern
can be described by a function. The TPR Tree allows for
efficient query of the current and future projected locations
of the linearly moving objects. Indexing of moving objects
with non-linear motion patterns is addressed in [24], where
server-level coarse indexes and client-level refined indexes
are combined to incorporate predictive queries over non-
linear motion patterns of the objects. Query processing and
optimization algorithms for continuous query [21, 22, 20,
19], mainly range queries and nearest neighbor queries, have
been proposed. In SCUBA [22], moving micro-clusters are
utilized for pre-filtering in order to reduce unnecessary spa-
tial joins and perform intelligent load shedding. Our work is
different for the following reasons: (1) Our data comes from
static geo-sensor networks monitoring spatially and tempo-
rally continuous phenomena, not from moving objects; (2)
in moving object databases, queries typically originate from
a moving object and are mostly moving window queries or
nearest neighbor queries. In our context, queries do not
come from moving object and join queries are common. As
a result, some indexing and query processing strategies de-
signed for queries from moving points are difficult to be ap-
plied directly. For example, the SCUBA system’s optimiza-
tion strategy is not applicable in our scenario because there
are no individual queries within the micro-cluster; (3) most
indexing algorithms assume that positions of moving objects
are continuously materialized into disks in some way. We as-
sume the recent geo-streams are memory resident as in SINA
[20] (in-memory hash tables to incrementally evaluate) and
SOLE [19] (uses memory-based algorithms to perform online
operations).

Work in processing streaming images, such as [10], at-
tempts to treat an image as a complex data type and in-
troduces map/image algebra operations to allow users to
manipulate streaming images. Supporting queries with ex-
tended spatio-temporal extent in real time were not ad-
dressed in the work. Spatial-temporal database systems
such as Secondo [12], and Dedale [11], have been built with
various levels of support for spatio-temporal data. However,
supporting geo-streams has not been addressed.

Our work is also related to spatial clustering and poly-
gonization. Spatial clustering is a well studied area in data

mining. However, supporting spatial clustering through database

management systems and query language has only been ex-
plored recently. Our previous work [29] and [17] recognize

the inadequateness of aggregation using GROUP BY in SQL
and suggest using CLUSTER BY in static database systems.
However, efficient implementation algorithms for continuous
queries were not addressed. The elevation of a cluster of
points into spatial regions is non-trivial without previous
knowledge of cluster boundary information. In [15], average
length of all edges was used as the threshold to eliminate
edges in a triangulation for polygonization. This approach
is for visualization purposes only and does not compute the
sequence of the vertices that constitute the resultant poly-
gons. We introduce an approach to elevate discrete spa-
tial data points into higher-level spatial objects and support
continuous queries on them (with or without explicit poly-
gonization).

Our work is further related to sensor network databases.
The feasibility of abstracting a sensor network as a database

has been documented and prototyped in pioneer sensor database

systems, notably Cougar [28] and TinyDB [18]. These sys-
tems have the same interface as desktop or server databases
through standard query languages, e.g. SQL. Many efforts
have been dedicated to extending the lifetime of a sensor net-
work. The recent work [8, 27] recognizes the mismatch of
discrete sensor readings with high-level phenomena and tries
to bridge them. Worboys [27] et. al. proposes a framework
for detection of global high-level events based on discrete
local sensor readings. MauveDB [8] proposes using interpo-
lation to bridge the discrete reading from geo-sensors with
the continuous phenomena that a sensor network monitors
to deal with the inherent noisy and unreliable underlying
sensor networks. However, none of this work allows further
abstraction of the phenomena into spatial objects such as
flooding zones, nor does it allow real time queries on them.

6. SUMMARY AND FUTURE DIRECTIONS

This paper focuses on one important type of geo-streaming
data - point geo-streams. Querying streaming point clusters
as regions directly in the geo-stream database has many ben-
efits, but is also very challenging. We proposed two query
optimization strategies, namely semantics-based optimiza-
tion and incremental optimization for answering queries in-
volving point geo-streams and static data set. The experi-
mental results on a streaming meteorological dataset demon-
strate the effectiveness and the efficiency of the query pro-
cessing techniques.

As an extension to this paper, we plan to work on query
processing for different types of queries systematically. We
also plan to extend our work to handle more complicated



queries involving multiple geo-streams and/or static spatial
relations. One opportunity in multiple query optimization is
to exploit the similarities of two queries in terms of spatial
coverage. If we can build a tree of the queries based on
their spatial coverage, the result for an intermediate query
node may be computed from the results of its children query
nodes. Another possibility is to observe the moving models
of the streaming regions and perform pre-computation for
future time slices when the query load is not at peak state.
Finally, as an integral part of the system, query processing
on moving sensors will also be addressed.
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