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Abstract

Co-location patterns are subsets of spatial features (e.g.
freeways, frontage roads) usually located together in geo-
graphic space. Recent literature has provided a transaction-
free approach to discover co-location patterns over spatial
point data sets to avoid potential loss of proximity rela-
tionship information in partitioning continuous geographic
space into transactions. This paper provides a more general
transaction-free approach to mining data sets with extended
spatial objects, e.g. Key chal-
lenges include modeling of neighborhood and relationships

line-strings and polygons.

among extended spatial objects as well as control of related
geometric computation costs. The approach we propose is
based on a new buffer-based definition of neighborhoods.
Furthermore, we introduce and compare two pruning ap-
proaches, namely a prevalence-based pruning approach and
a geometric filter-and-refine approach. Experimental evalua-
tion with a real data set (a digital roadmap of the Minneapo-
lis and St. Paul metropolitan area) shows that the geometric
filter-and-refine approach can speed up the prevalence-based
pruning approach by a factor of 30 to 40. Finally, we show
how the extended co-location mining algorithm proposed
in this paper has been used to find line-string co-location
patterns, which can help with decision-makings on selecting
most challenging field test routes. These field test routes are
important for evaluating a GPS-based approach to accessing
road user charges.
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1 Introduction

Co-location patterns represent subsets of Boolean spa-
tial features whose instances are often located in close
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geographic proximity. For example, E-services are grow-
ing along with mobile computing infrastructures such
as PDAs and cellular phones. Finding E-services fre-
quently located together is of interest to providing
location-awareness market promotions. In ecology, sci-
entists are interested in finding frequent co-occurrences
among Boolean spatial features, e.g., drought, El Nino,
substantial increase in vegetation, substantial drop in
vegetation, extremely high precipitation, etc. Effec-
tive tools for extracting information from geo-spatial
data, the focus of this work, are crucial to organizations
which make decisions based on large spatial datasets.
These organizations are spread across many domains
including ecology and environmental management, pub-
lic safety, transportation, public health, business, and
tourism [3, 14, 16, 10, 23, 27].

Co-location Patterns — Sample Data
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Figure 1: Point Spatial Co-location Patterns Illustra-
tion. Shapes represent different spatial feature types.
Spatial features in sets {‘+’, ‘x’} and {‘o’, **’} tend to

be located together.

In the real world, many spatial datasets consist of a
collection of instances of Boolean spatial features (e.g.,
drought, needle leaf vegetation). Figure 1 shows the
frequent co-occurrences of some point spatial feature
types represented by different shapes. As can be
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Figure 2: Line String Co-location Patterns Illustration

seen, instances of spatial features in sets {‘+’, ‘x’}
and {‘0’, ‘*’} tend to be located together. Figure
2 shows an instance of co-location patterns among
extended spatial features, namely road-types, on an
urban roadmap. Highways in large metropolitan area
often have frontage roads nearby. Identification of such
co-locations is useful in selecting test-sites for evaluating
in-vehicle navigation technology [28]. While Boolean
spatial features can be thought of as item types, there
may not be an explicit finite set of transactions due
to the continuity of the underlying space. As a result,
it is difficult to apply classic association rule mining
[1, 2, 12, 18, 21, 22, 25, 26] directly to spatial contexts.
Related Work: Approaches to discovering co-
location rules in the literature can be categorized into
two classes, namely spatial statistics and data min-
ing approaches. Spatial statistics-based approaches use
measures of spatial correlation to characterize the re-
lationship between different types of spatial features.
Measures of spatial correlation include the cross-K func-
tion with Monte Carlo simulation [5], mean nearest-
neighbor distance, and spatial regression models [4].
Computing spatial correlation measures for all possi-
ble co-location patterns can be computationally expen-
sive due to the exponential number of candidate subsets
given a large collection of spatial Boolean features.
Data mining approaches can be further divided into
a clustering-based map overlay approach and associ-
ation rule-based approaches. A clustering-based map
overlay approach [9, 8] treats every spatial attribute as
a map layer and considers spatial clusters (regions) of
point-data in each layer as candidates for mining asso-

ciations. Given X and Y as sets of layers, a clustered
spatial association rule is defined as X = Y (CS,CC%),
for XY = 0, where CS is the clustered support, de-
fined as the ratio of the area of the cluster (region)
that satisfies both X and Y to the total area of the
study region S, and CC% is the clustered confidence,
which can be interpreted as CC% of areas of clusters (re-
gions) of X intersect with areas of clusters(regions) of
Y. There are several disadvantages in clustering-based
approaches. First, these approaches assume that in-
stances of each spatial feature are clustered. However,
many spatial features can be completely spatially ran-
dom or declustered (i.e. negative spatial autoregression)
at many scales. Second, these approaches are sensi-
tive to the choices of clustering algorithms from among
a large number of candidates [11]. Finally, these ap-
proaches are quite sensitive to the presence of noise.

Association rule-based approaches fall into two cat-
egories: The first category focuses on the creation of
transactions over space so that an Apriori-like algo-
rithm [2] can be used. Transactions over space can be
defined by a reference-feature centric model [15] or a
data-partition [17] approach.

The reference feature centric model [15] is
relevant to application domains focusing on a specific
Boolean spatial feature, e.g. cancer. Domain scientists
are interested in finding the co-locations of other task
relevant features (e.g. asbestos, other substances) to
the reference feature. This model enumerates proxim-
ity neighborhoods to “materialize” a set of transactions
around instances of the reference spatial feature. A spe-
cific example is provided by the spatial association rule
[15]. Transactions are created around instances of one
user-specified spatial feature. The association rules are
derived using the Apriori [2] algorithm. The rules found
are all related to the reference feature. Generalizing
this paradigm to the case where no reference feature is
specified is non-trivial. Defining transactions around lo-
cations of instances of all features may yield duplicate
counts for many candidate associations.

Defining transactions by a data-partition ap-
proach [17] attempts to measure the frequency of a
co-location pattern by grouping the spatial instances
into disjoint partitions. This approach may be useful
in data exploration when one is interested in explor-
ing the sets of partitions and identifying regions that
maximize co-location. Occasionally, imposing artificial
disjoint transactions via space partitioning may under-
count instances of tuples intersecting the boundaries of
artificial transactions or double-count instances of tu-
ples co-located together. In addition, there may be
multiple partitions yielding distinct sets of transactions,
which in turn yields different values of prevalence for co-



location patterns.

The second category of association-rule based ap-
proaches are transaction-free. In other words, no ex-
plicit transactions are generated for the purpose of min-
ing co-location patterns. The event centric model
[13, 19] falls into this category and is relevant to applica-
tions like ecology, where many types of Boolean spatial
features exist. Ecologists are interested in finding sub-
sets of features likely to occur in a neighborhood around
instances of given subsets of event types. The event cen-
tric model yields a definition of one prevalence measure
without the need for generating transactions. However,
the event centric model is only for spatial point objects;
there is no natural extension of this model to extended
spatial objects (e.g. polygons and line strings).

In this paper, we generalize the concept of co-
location patterns to extended spatial data objects and
provide a more general transaction-free co-location min-
ing model by using the notion of buffer, a zone of
specified distance around spatial objects. This buffer-
based model integrates the best features of the event
centric model and can identify co-location patterns
over extended spatial objects. Furthermore, this paper
presents two pruning approaches, namely a prevalence-
based pruning approach and a geometric filter-and-
refine approach. The geometric filter can reduce a large
number of expensive geometric intersection operations,
thus saving a lot of computation costs. As demonstrated
by our experiments on a real data set (the roadmap
for Minneapolis and St. Paul metropolitan area), the
geometric filter-and-refine approach can speed up the
prevalence-based pruning approach by a factor of 30 to
40. Finally, we introduce an application of the proposed
extended co-location mining algorithm for discovering
line-string co-location patterns which can help with de-
cision making regarding the selection of most challeng-
ing field test routes. These field test routes can then
be used to evaluate the performance of a GPS-based
approach to accessing road user charges [20].

Outline: The remainder of this paper is organized
as follows. Section 2 describes the buffer-based model
and its associated measures of prevalence and condi-
tional probability. Section 3 presents a coarse-level co-
location mining framework and the geometric challenge.
Co-location mining algorithms and design decisions are
described in section 4. We provide the experimental re-
sults in section 5. Finally, section 6 gives conclusions
and suggests future work.

2 A Buffer-based Model
Pattern Discovery

for Co-location

In this section, we propose a buffer-based model for
mining co-location patterns. This model can deal with

point objects as well as extended spatial objects, such
as line strings and polygons.

2.1 Basic Concepts of the Buffer-based Model

To facilitate our discussion, we first present some
basic concepts of the buffer-based model.

DEFINITION 2.1. A co-location pattern is a set of
spatial features with the prevalence measure of this
set greater than a user-specified minimum prevalence
threshold. A co-location rule is of the form: C1 —
Cy(s,cp) where Cy and Cy are co-locations, s is a
number representing the prevalence measure and cp is
a number measuring the interestingness of the rule.

A prevalence measure describes statistical signifi-
cance of a co-location pattern while interestingness mea-
sures how useful or actionable a co-location pattern is.
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Figure 3: A Buffer-based Neighborhood Illustration.

DEFINITION 2.2. N(p), the size-d Euclidean neighbor-
hood of a point location p, is a circle of radius d with p
as its center.

DEFINITION 2.3. N(o0), the size-d neighborhood of an
extended spatial object (e.g. polygon, line-string), is
defined by the buffer operation as shown in Figure 3.

In GIS or geographic information systems, a buffer
is a zone of specified distance around spatial objects.
The boundary of the buffer is the isoline of equal
distance to the edge of the objects. Figure 3 shows
a buffer operation on spatial objects. As can be
seen, the buffer operation results in new boundaries
around points, lines, or polygons. Although the buffer
operations are computationally expensive, there are
many advantages to using buffers in GIS. First of all,
objects in space frequently have some sort of impact
on the objects and areas around them. For example,
Freeways create “noise pollution” that can be heard
blocks away. Also, factories emit fumes that can
affect people for miles around. Buffers can be used in
these instances to depict a sphere of influence in which
the people and places within this “sphere” are more
significantly impacted by a given phenomenon than
those on the outside. Another advantage of using buffers



in GIS is to protect places that are less significantly
impacted by a given phenomenon. Examples include
areas around school where liquor stores are prohibited.

A common concern among people using buffers is to
figure out what buffer size to use in their analysis. Since
buffer size designation can vary substantially between
projects, various factors could be considered. These
factors may include: 1) Input from source: An attribute
of the object being buffered is used to decide the buffer
size. 2) Internal factors within a buffer: Variables
affecting the area inside the buffer boundaries such as
topography within the buffer. 3) Outcomes: What is
probably going to happen because of variables inside
and outside the buffered area.

DEFINITION 2.4. The Euclidean neighborhood N(f;) of
a feature f; is the union of N(i;) for every instance i
of the feature f;.

DEFINITION 2.5. The FEuclidean neighborhood

N(fife-..fx) for a feature set C = {f1,...,fx}
is the intersection of N(f;) for every feature f; in C.

DEFINITION 2.6. I = {i1,i2,... %, B} is a row in-
stance of a feature set C = {f1,..., fx} if the feature
set of I contains C and no proper subset of I does so;
and B > 0 where B represents (; .y N(ij). The ta-
ble instance of a feature set C = {f1,..., fx} is the
collection of all row instance of the set C.

DEFINITION 2.7. The coverage ratio Pr(fifs... fx)
for a feature set C = {f1,---, fe} s
N(f1fz:. fi) where N(fifo...fr) is

Thetotal areaof the plane’
the Fuclidean neighborhood of the set C.

The coverage ratio serves as the prevalence measure
in our buffer-based model. In other words, for a spatial
feature set F', if the coverage ratio Pr(F) is greater
than a user-specified minimum prevalence threshold, the
feature set F is a co-location pattern. Intuitively, the
coverage ratio measures fraction of the total area of the
spatial framework influenced or covered by the instances
of given spatial features.

DEFINITION 2.8. The conditional probability
Pr(Cs|Cy) of a co-location rule C; — Cy is the
probability of finding the neighborhood of Cy in the
neighborhood of Cy. It can be computed as %
using the neighborhoods of co-locations C1 and C1 | Cs.

LEMMA 2.1. The coverage ratio for co-location patterns
18 monotonically non-increasing with the size of the co-
location pattern increasing.

Proof. According to Definition 2.7, the coverage ra-
tio Pr(fifa-.. fr) for a co-location C = {f1,..., fr}is
The totz(;rlef; offfiz,e plane’ where N(fl f2 te fk) is the Eu-
clidean neighborhood of the co-location C. For any co-
location C' = C U {f'}, where f' ¢ C, we need to prove
that Pr(fifa... fx) > Pr(fifz-.. fxf'). Also, consider

N !
that Pr(f1f2 e fkf’) ~ The tota(lf(;j:a o{fkifhlplane’ we Only

need to prove N(fi1fa...fx) > N(fifz.-. fxf'). Since
the Euclidean neighborhood N(C) for a co-location C
is the intersection of N(f;) (V fi € C) and adding one
more feature can only reduce the intersection area, we

obtain N(f1f2 SN fk) > N(f1f2 e fkfl).

Lemma 2.1 ensures that the coverage ratio can be
used to efficiently discover co-location patterns with
high prevalence. The coverage ratio pruning in co-
location pattern mining is similar to the support-based
pruning in association-rule mining [1].
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Figure 4: An Illustration to show the inconsistency of
the definition of the conditional probability measure in
the event centric model with the multiplication rule.
(a) Table instances of co-locations {A}, {B}, and {C}.
(b) Table instances of co-locations {4, B}, {B,C?}, and
{A,C}. (c) Table instance of co-location {A, B,C}.
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Figure 5: An Illustration Example to show that the
event centric model is not good at incorporating spatial
context.

2.2 Advantages of the Buffer-based Model

The buffer-based model has three advantages over the
event centric model [19] as follows.

- First, the event centric model is only for point
objects, while the buffer-based model can deal with
point objects as well as extended spatial objects.

- Second, the conditional probability measure used
in the event centric model does not satisfy the
multiplication rule [7] in statistics.
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To show this, we first recall the definition of the
conditional probability in the event centric model.
A set of spatial instances I is a row instance
of a subset of spatial features C, if any pair of
elements from I are neighbors and the spatial
feature set formed by spatial features of elements
of I contains C' and no proper subset of I does

so. The conditional probability of a co-location
. |distinct(mwc, (row instances of C1UC32))|

rule C; — Cy is |row instances of C1|

where 7 is a relational projection operation. For

the illustration spatial dataset shown in Figure
4, the table t4 in Figure 4 (b) contains four
row instances: AyBj, A1 By, A2 By and A3 Bs of the
co-location {A, B} and the table t7 in Figure 4
(c) contains one row instance A;B;C; of the co-
location {A,B,C}. The conditional probability
Pr(C|AB) of the co-location rule AB — C is
|distinct(7r{A,B%(row instancesof {A,B,C}))| 1 Also

|row instances of {A,B}| 4 ’
we get Pr(BC|A) =1/2 and Pr(B|A) =1 (Please
note that, after projecting on feature A, there are
only two different instances of A although there are
four row instance of the co-location {4, B}. That is
the reason why Pr(B|A) = 1). The above results in
Pr(BC|A) # Pr(C|AB)Pr(B|A). However, by the
multiplication rule for the conditional probability,
we know Pr(C|AB)Pr(B|A) = 552 FER) —
Pr(BC|A);

While the definition of the conditional probability
measure proposed in the event centric model does
not satisfy with the multiplication rule in statistics,
our new conditional probability definition does as
shown below in Theorem 2.1.

Third, the event centric model is not good at
incorporating spatial context. To illustrate this,
let us look at the example dataset shown in Figure
5. Assume that the size of square neighborhood
is fixed, under the event centric model, we will
identify the same co-location pattern {A, B} from

two different illustration datasets (a) and (b) with
the same significance. However, as we can see,
the distance between instances of A and B in
dataset (b) is closer than the distance between
instances of A and B in dataset (a). According
to Tobler’s first law of geography: everything is
related to everything else but nearby things are
more related than distant things [24], we can infer
that the co-location pattern {4, B} in dataset (b)
should be more significant. In spatial statistics,
an area within statistics devoted to the analysis
of spatial data, this called spatial autocorrelation
[5]. Knowledge discovery techniques which ignore
spatial autocorrelation typically perform poorly in
the presence of spatial data.

THEOREM 2.1. Suppose that f1, fa, ..., fn are n spa-
tial events and Pr(fifa...fn) is the coverage ratio of
the co-location C = {f1, f2, -.-, fn}- Then

(2.1) Pr(fifz... fn) = Pr(fO)Pr(faolfr)... Pr(falfifa... fn-1).

where Pr(fn|fife- .- fn_1) is the conditional probability
of the co-location rule {f1, f2,... , fn—1} = {fn}

PT‘OOf. Since Pr(f1) = Theototatarea ofivh(zi;)mtiul Framewor
we know Pr(fa2|f1) = NA(,’(I}f §), the product of probabili-

ties on the right side of Equation (2.1) is equal to

- and

N(f1) N(f1f2) N(fifa-..fn)

Thetotal area of the spatial framework N(f1) ~~ N(fifz...fn-1)
Because Pr(fifs...fn-1) > 0, each of the de-
nominator in the above product must be positive.
All of the terms in the product cancel each other
except the final numerator N(fifz...fn,) and the
first denominator Thetotal area of the plane, which is

N(f1fz:.fn) Also, the left side of Equation

Thetotal area of the plane*
. N(fifz...fr) ; ;
(2.1) is equal t0 77 7orarares o thepianes Which is the

right side of Equation (2.1).
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Figure 7: A sample spatial dataset to illustrate the
process of mining coarse-level co-location patterns

3 A Coarse-level Co-location Pattern Mining
Framework

The buffer-based model has a major challenge in dealing
with a large number of overlay operations, which find in-
tersection areas among buffers of spatial objects through
geometric intersections. Overlay operations on objects
with irregular shapes are very expensive. To cope with
this computation challenge, in this section, we present a
coarse-level co-location pattern mining framework. This
approach follows a filter-and-refine paradigm and is mo-
tivated by the observation that spatial objects have
unique spatial characteristics, such as distance differ-
ences or density differences. In other words, we apply a
geometric filter to eliminate a lot of feature sets which
cannot form co-location patterns, thus greatly reducing
the number of overlay operations and improving perfor-
mance significantly.

3.1 Basic Concepts

DEFINITION 3.1. BN(0), the bounding neighborhood of
a spatial object (e.g. point, polygon, line-string) o, is
defined as MBBR (Buffer(MOBR (Spatial Object O), d))
as shown in Figure 6, where MOBR is the minimum
object bounding box, Buffer is the buffer operation with
a buffer size as d, and MBBR is the minimum buffer
bounding boz.

For instance, for a line-string object O, we first get
the minimum bounding box of the object O, MOBR(O).
Then we construct a buffer for MOBR(O). Finally, the
bounding neighborhood of the object O is the minimum
bounding box for this buffer. This process is shown in
the second column of Figure 6.

DEFINITION 3.2. The Euclidean bounding neighborhood
BN(f;) of a spatial feature f; is the union of BN (i;)
for every instance i; of the spatial feature f;.

DEFINITION 3.3. The Fuclidean bounding neighborhood

BN(fifa-..fx) for a feature set CC = {f1,..., fx} is
the intersection of BN(f;) for every feature f; in CC.

For example, Figure 7 shows eight objects with their
bounding neighborhoods. In the figure, we can see four
instances of feature A, A1, A2, A3, A4, and only the
bounding neighborhood of A3 has one-cell overlapping
with the bounding neighborhood of A4. If we set the
area of a cell to be one unit, the Euclidean bounding
neighborhood BN(A) of feature A is 4 x 9 - 1 = 35,
which is the union of the bounding neighborhoods of
these four instances. In the above calculation, the minus
one is due to the fact that we do not want to double
count the overlapping area. In addition, the bounding
neighborhood of feature set {A, B}, BN(AB), is 4 + 6
+ 2 =12, which is the intersection area of the bounding
neighborhood of feature A and feature B.

DEFINITION 3.4. CI = {i1,i9,...,ix, BB} is a
coarse-level row instance of a feature set CC =
{f1,---, [} if the feature set of CI contains CC and
no proper subset of CI does so; and BB > 0 where
BB represents (\; c; BN(ij). The coarse-level table
instance of a feature set CC = {f1,..., fx} is the col-
lection of all coarse-level row instance of the set CC.

In Figure 7, CI = {Al,B1,4} is a coarse-level
row instance of the feature set CC = {4, B} since
the intersection area of the bounding neighborhoods of
instances A1 and B1 is 4. In addition, the table instance
of the coarse-level co-location pattern CC = {4, B} is
{{A1, B1,4},{A2, B2, 6}, {A3, B3,2}}.

DEFINITION 3.5. The coarse-level coverage ratio

CPr(fifa-.-frx) for a set CC = {fi,...,fx} is
Thetogz]lvcgf;{zc;}{zlplane’ where BN(flefk) is the

FEuclidean bounding neighborhood of the set CC.

The coarse-level coverage ratio serves as the preva-
lence measure in our coarse-level co-location mining
framework. For the spatial dataset shown in Figure
7, the coarse-level coverage ratio CPr(A) for feature

. BN (A) __ 35 __
Ais Thetotal areaof theplane — 200 0.175.  Further-

more, the coarse-level coverage ratio CPr(AB) for the
set CC = {A, B} is BN(AB) =12 —0.06.

Thetotal areaof the plane — 200

DEFINITION 3.6. A coarse-level co-location pat-
tern is a set of spatial features with a coarse-level cover-
age ratio greater than a user-specified minimum preva-
lence threshold.

LEmMMA 3.1. The coarse-level coverage ratio for
coarse-level co-location patterns is monotonically non-
increasing when the size of the coarse-level co-location
patlern is increasing.



Since the proof of this lemma is similar to the proof
of lemma 2.1, we omitted it here.

LEMMA 3.2. For any spatial feature set F =
{f1, f2,---, [r}, the coarse-level coverage ratio CPr(F)
is greater than the coverage ratio Pr(F).

Proof. According to definition 2.7, the coverage ra-
tio Pr(F) for a feature set F = {fi,...,fx} is
The totz(af;efz.onf:lze plane’ where N(fl f2 e fk) is the Eu-
clidean neigh{mrhood of the feature set F. Also, by def-
inition 3.5, the coarse-level coverage ratio CPr(F)
is The totBalea(':{:azz’o:f.{;czl plane’ where BN(fl f2 te fk) is the
Euclidean bounding neighborhood of the feature set F.
Since BN(f1f2-.. fr) is greater than N(f1f2 ... fx) due
to the way that the bounding neighborhood is con-
structed, we know CPr(F) > Pr(F). Hence, this

lemma holds.

Lemma 3.2 allows us to design a filter-and-refine
approach to finding co-location patterns, since, for
a user specified minimum coverage ratio threshold 6,
we can first use the coarse-level co-location mining
framework as a filter to find coarse-level co-location
patterns. All co-location patterns should be within
the set of coarse-level co-location patterns by Lemma
3.2. Then, we use overlay operations to find co-
location patterns from the set of coarse-level co-location
patterns.

3.2 Geometric Challenges and Solutions

In this subsection, we present geometric challenges
arising in the coarse-level co-location mining framework
and provide the corresponding solutions.

For spatial data sets, it is common that the bound-
ing neighborhoods of instances can overlap with each
other. In order to correctly compute the bounding
neighborhoods for features or feature sets, we need to
build a mechanism to prevent the overlapping area from
double counting. Otherwise, we may overestimate the
coarse-level coverage ratio of features or feature sets.
For this purpose, an innovative and effective geometric
mechanism is provided as follows.

LEMMA 3.3. For any n spatial events Ay, ...

(3.2)

CJ BN(4;) = i BN(A;) — >  BN(A;4;) +
i=1 i=1

i<j

’A’n)

Z BN(A;A;Ag) —
i<j<k

+.o.+ (=)™ BN(A145... Ay).

Z BN(A;A;ArAr)
i<j<k<l

Proof. In probability theory, the probability of the
union |J;_, A; of n events Ay, A, ..., A, can be

Y3t
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Figure 9: An overlapping example

computed as the following:

Pr(|J A:) =D Pr(A:) =D Pr(A;A;) +
i=1 i=1 i<j
(3.3) ST Pr(AiA;AL) —
i<j<k

+. 4 (-1 Pr(A145 ... A,).

> Pr(AiA;AcA)
i<j<k<l

where Pr(A) indicates the probability that A will
occur. One detailed proof of this equation can be found
in [7]. Instead, in our coarse-level co-location mining
framework, CPr(A) is defined as the coarse-level
coverage ratio of the spatial event A. This definition is
similar to the conventional probability definition. As
a result, the coarse-level coverage ratio of the union of
a finite number of spatial events can be computed in

. N — BN (A;)
the same way. Since CPT(Al) ~ thetotal areaof the plane’
A . BN(A;A;)
CPT(A’LAJ) - the total area of the plane’ and
BN(A1Aj...Ay)
CPT(A1A2 e A") the total area of the plane’ the

right side of the above equation is equal to

BN(A;) BN(A;Aj )
thetotal area of the plane B i< thetotal areaof the plane
BN(A1A; ... Ay)
the total area of the plane’

n
i=1

+ ... (—1)"Tt

Also, the left side of the equation is equal to

=1 BN(A:)
thetotal area of the plane’

The same denominator, the total area of the plane, can
be cancelled from both sides, so giving us Equation 3.2.

THEOREM 3.1. Given any n  spatial  events
Ay, Ay, ..., A, and the corresponding bound-
an neighborhoods ((xllba yllb)a (‘Tlrta ylrt));



EXCOM ALGORITHM

Py a set of size-k co-location patterns.

The Geometric Filter

1. Initialization;
2. CC,= geometric_search(FT, I, d);
3. C P,= prevalence_prune(CC4, 0);

The Refinement and Combinatorial Search

4. Initialization;

5. P, = overlay(CP,, d); k=2;

6. while(not empty Py) do {

7. Cr+1 = generate_candidate_colocation(Px);
8. Py4+1 = prevalence_prune(Cry1, 0);

9. Ry+1 = generate_colocation_rule(a);

10. k=k+1;

11. }

12. SAVE: union(Ps, ... , Prt1);

13. SAVE: union(Rsa, ... ,Rkt1);

Input: (a) A D1 x D, Spatial Framework R
(b) FT = {A Set of Spatial Features, which can be represented as points, line strings, and polygons.}
(¢) I = {Instance-ID, Feature-Type, Location in Space} representing a set of instances of features
(d) A buffer size d.
(e) A minimum coverage ratio threshold 6
(f) A conditional probability threshold « for generating co-location rules.

Output: (1) A set of co-location patterns with coverage ratios greater than a user-specified minimum threshold 6.
(2) A set of co-location rules with a conditional probability greater than «

Variables: k: the co-location size

CC5: a set of candidate size-2 coarse level co-location patterns.
CP;,: a set of size-2 coarse-level co-location patterns having coverage ratios > 6.
Ck: a set of candidate size-k co-location patterns.

Ry: a set of co-location rules derived from size-k co-location patterns

Figure 8: Overview of the EXCOM Algorithm

(($2lba y?lb)a ($27‘t7 yQ'I‘t)); ) ((z‘nlba ynlb), (J;nrt’ ynrt));
where the bounding neighborhood of event A;, 1 <1i<mn,
is represented by the left bottom point (zip, yiup) and
the right top point (Tirt, Yirt), if the bounding neigh-
borhoods of these m spatial events have a common
intersection area, then this intersection area can be
computed by Equation 3.4.

(34) BN(AlAQAn) = (Xg—Xl)*(YYQ —Y]_)
where
X9 = min{Z1irs, Torty -+ > Trrt ),
X1 = max{Tup, T2ps --+ > Tnib},
Yo = min{yirt, Yorts -+ Ynrt}
Y1 = maz{yup, y2ue, --- » Yniv}-

Proof. Since the bounding neighborhoods of these n
spatial events have the common intersection area, we
can represent this intersection region as S, S C
BN(A4;), forl < i < n. For any point (z,y) € S,
we claim that X3 < x < X5 and Y7 < y < Y. This
claim can be proved by contradiction as follows.

Assume that X; < =z is not true; this assump-
tion means that at least one value from the set
{z1up, Taap, --- ,Tnip} is greater than x. Without loss
of generality, say x;, > x, since x;;; is the left edge of
the bounding neighborhood of the spatial event A;, we
can get (z,y) ¢ BN(A;). Since (z,y) € S, we get
S ¢ BN(4;), which contradicts the given condition
that S C BN(A4;). Hence X; < z is true. Similarly,
we can prove z < X5 and Y7 < y < Y5 are true.



By Theorem 3.1 and Lemma 3.3, we can compute
the bounding neighborhoods of features or feature sets
without double counting the overlapping area.

For instance, in Figure 9, we can find three
instances of feature A, so the bounding neigh-
borhood of feature A is U?:l BN(A;).  Accord-
ing to Lemma 3.3, U, BN(4;) = BN(4,) +
BN(As) + BN(A3) — BN(A143) — BN(A14;3) —
BN(A2A3) + BN(A1A2A3). In addition, we can get
BN(AlAQ), BN(A1A3), BN(A2A3), and BN(A1A2A3)
by Theorem 3.1, so we can compute the correct value
for U?=1 BN(4;) by Equation 3.2.

4 Algorithm Descriptions

Figure 10 presents an overview of algorithm designs
for mining co-location patterns over extended spatial
objects. In the figure, we show two pruning ap-
proaches. One is prevalence-based pruning using the
anti-monotone property of the coverage ratio. This is
similar to the support-based pruning in association-rule
mining [2]. The second is a novel geometric filtering
approach, which makes use of unique spatial character-
istics of spatial objects and dramatically reduces the
pattern search from a global space to local spaces.

Direct
Combi ial Search
ith Overlay Operation|

Co—location
> Patterns

Refinement
Coarse Level § R
—| Combinatorial Search
Patterns

With Overlay Operation

Geometric Filter

Spatial Objects —#| (Quad-Tree)

Figure 10: The Algorithm Design Illustration.

DCS: Direct Combinatorial Search Algorithm:
One choice of co-location pattern mining is to use direct
combinatorial search - an Apriori-like algorithm [2], in
which we only apply prevalence-based pruning. All pat-
terns satisfying the minimum prevalence threshold are
candidate co-location patterns. Then, GIS overlay op-
erations are applied to produce neighborhoods for these
candidate co-location patterns. In GIS overlay oper-
ations, extensive geometric intersections are required.
Hence, the computation cost of overlay operation is very
high. Indeed, the computation cost for GIS overlay op-
erations dominates in the DCS algorithm.

EXCOM: An Extended Co-location Mining Al-
gorithm: We also design a more sophisticated algo-
rithm, called an EXtended CO-location Mining algo-
rithm (EXCOM) for mining co-location patterns over

extended spatial objects. Figure 8 illustrates the pseu-
docode of the EXCOM algorithm, which follows a filter-
and-refine paradigm and can prune the search space
based on the following two criteria. 1) Pruning based
on the anti-monotone property of the coverage ratio
(Lemma 2.1). 2) Pruning based on a geometric filter
- a quad-tree [6]. The difference between the EXCOM
algorithm and Apriori-like approaches [2] is from the
unique characteristics of spatial features. Specifically, in
the EXCOM algorithm, we first apply the coarse-level
co-location mining framework to find size-2 coarse-level
co-location patterns and then conduct overlay opera-
tions to find size-2 co-location pattern. Finally, we gen-
erate co-location patterns with size greater than two
using Apriori-like approaches.

In the EXCOM algorithm, the number of patterns
required for GIS overlay operations is significantly re-
duced compared with the DCS algorithm. Since the
computation cost of GIS overlay operations is extremely
high, the computation cost of the EXCOM algorithm
can be much cheaper than that of the DCS algorithm.

5 Experimental Evaluation

In this section, we present the results of extensive ex-
periments on a real digital roadmap data set to evaluate
the proposed buffer-based model and the EXCOM al-
gorithm for mining co-location patterns over extended
spatial objects. Specifically, we demonstrate: (1) the
geometric filtering effect in the EXCOM algorithm. (2)
the effectiveness of the buffer-based model for dealing
with extended spatial data types, such as line strings.
(3) the application of line-string co-location patterns for
test route selection.

Candidates:
DCS, EXCOM

-

Co-location
Mining Algorithms

e

Parameters:
Coverage Ratio, Buffer Size

Co-location ratio
analysis for line—string
co—location patterns

—

Road Map Data Set
_

Summary

, €.2. execution time

Figure 11: The Experimental Design

Experimental Data Sets. We conducted exper-
iments on a real data set, namely a digital
roadmap of the Minneapolis and St. Paul metropoli-
tan area. The raw data is from the Minnesota
Department of Transportation (MN/DOT) base map
(http://rocky.dot.state.mn.us/basemap) and is stored
in Shape File format that can be read and displayed by



GIS tools, such as Arc/View and Arc/Info. We trans-
formed all the data into text format, including projected
coordinates information and road type information for
each road segment. There are a total of 511361 road
segments in this dataset.

Experimental Design. To evaluate the filtering effect
of the geometric component in the EXCOM algorithm,
we compared the EXCOM algorithm with a direct
combinatorial search (DCS) approach, as illustrated in
Figure 11.

Experimental Implementation Platform. All ex-
periments were performed on a Sun Ultra 10 worksta-
tion with a 440 MHz CPU and 128 Mbytes of memory
running the SunOS 5.7 operating system.
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Figure 12: The Filtering Effect of the Geometric Com-
ponent in the EXCOM algorithm.

5.1 The Filtering Effect of the Geometric
Component in the EXCOM algorithm

In this experiment, we evaluated the filtering ef-
fect of the geometric component in the EXCOM
algorithm using real digital roadmap data. For the
purpose of comparison, the same prevalence threshold
and buffer size were applied in both EXCOM and
DCS algorithms. In other words, both algorithms
were tested under the same experimental setting and
produced the same set of co-location patterns.

Figure 12 shows the performance comparison be-
tween the direct combinatorial search algorithm (DCS)
and the EXCOM algorithm. As can be seen, the execu-
tion time of the EXCOM algorithm is significantly less
than that of the DCS algorithm. This can be explained
by the fact that the DCS algorithm uses prevalence-
based pruning only, while the EXCOM algorithm uses

both prevalence-based pruning and geometric filtering.
In this case, the geometric filter speeded up prevalence-
based pruning by a factor of 30 - 40 as shown in the
figure. This huge computation saving is due to the
fact that GIS overlay operations dominate in both al-
gorithms and a large number of GIS overlay operations
were saved in the EXCOM algorithm.

We can also see that the computation performance
of the DCS algorithm is not very sensitive to the buffer
size. By contrast, the computation cost of the EXCOM
algorithm is increased with the increase of the buffer
size, since the performance of the geometric filter in this
algorithm relies on the buffer size.
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Figure 13: Illustration of Line-String Co-location Ratio

for Different Road Types

5.2 Line-string Co-location Patterns

We also applied our buffer-based model to find
line-string co-location patterns from the real digital
roadmap data set. To the best of our knowledge, no
techniques have been reported previously to discover
such line-string co-location patterns in the literature. In
this experiment, we present the line-string co-location
ratio for each road type using different buffer sizes.
The line-string co-location ratio is computed as

len(line—string co—locations within the neighborhood of thebuf fer)

Total Length of the Corresponding Road Type

Figure 13 shows co-location ratios of several differ-
ent road types in the MN/DOT base map. Here, we ob-
served line-string co-location ratios with different buffer
sizes including 20, 30, 40, 50, 60, and 100 feet. As can
be seen, the co-location ratio goes up as the buffer sizes
increase. Another interesting observation is that the
co-location ratio for road type 22 is significantly higher
than for other road types. In the MN/DOT base map
definition, road type 22 is a ramp (please refer to ap-



pendix C). This finding indicates that the ramp is usu-
ally co-located with some other types of roads. Gen-
erally speaking, the co-location ratio provides a basic
understanding of co-location pattern distributions over
different road types.

5.3 The Application of Line-string Co-location
Patterns for Test Route Selection

Here, we illustrate the application of line-string
co-location patterns for selecting most challenging test
routes, which are important for a novel GPS-based
approach to accessing road user charges [20]. One
common approach to evaluating digital roadmap
accuracy is to measure the errors between a GPS track
on a selected test route with a digital roadmap track.
However, it is usually difficult to select a suitable test
route for collecting GPS data. Consider that it is very
often that errors happen near the dense road area
among which the area that includes dense roads with
different road types is the most important. Line-string
co-location patterns from the digital roadmap provide
a guide for identifying such error-prone areas.

[ OO T |
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Figure 14: Field Test Route 1 in Twin Cities Area

In our project to evaluate the GPS-based approach
to accessing road user charges [20], we were able to select
five suitable test routes in the Minneapolis and St. Paul
metropolitan area based on the line-string co-location
patterns we identified using our extended co-location
mining algorithm. These five routes were identified
around areas having rich line string co-location patterns.
For instance, one of these test routes is illustrated in
Figure 14. For this test route, the highway part includes
US 169, 1-394, MN 100, MN 62, and I-35W in the
Minneapolis and St. Paul metropolitan area.

6 Conclusion and Future Work

In this paper, we proposed a buffer-based model for
mining co-location patterns over extended spatial ob-
jects. This model integrates the best features of the
event centric model and applies a statistically consistent
definition for the conditional probability measure. Also,
we provided an extended co-location mining algorithm
(EXCOM), which follows a filter-and-refine paradigm
and can efficiently find co-location patterns. Finally, ex-
perimental results indicate that the geometric filter can
speed up the prevalence-based pruning approach by a
factor of 30 - 40 and a case study of applying line-string
co-location for test route selection shows the value of
co-location patterns for real world applications.

As for future work, with the definition of time
windows, it is possible to extend the concept of co-
location events into co-incidence events. Co-incidence
patterns contain the events that are frequently occurred
during the same time period.
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Appendix
Type | Meaning

01 Interstate Trunk Highway
02 U. S. Trunk Highway
03 Minnesota Trunk Highway
04 County State-aid Highway
05 | Municipal State-aid Street
07 | County Road
08 Township Road
09 | Unorganized Township Road
10 Municipal Street
11 National Park Road
12 National Forest Development Road
13 Indian Reservation Road
14 State Forest Road
15 State Park Road
16 Military Road
17 National Monument Road
18 National Wildlife Refuge Road
19 Frontage Road
20 State Game Preserve Road
22 Ramp
23 Private Jurisdiction Road

Table 1: Road Types For MN/DOT Digital Base Map



