Detection, Classification and Tracking
Detection, Classification and Tracking of Targets in Distributed Sensor Networks

Dan Li, Kerry D Wong, Yu H. Hu and Akbar M. Sayeed
Overview

- Detection: Is there a target?
- Localization: If so, where is it?
- Tracking: Which way is it going?
- Classification: What kind of target is it?
Collaborative Signal Processing

- Distributed processing
 - Raw signal is processed locally. Summary statistics are stored locally and transferred between nodes on-demand.

- On-demand processing
 - No automatic publish-subscribe. Nodes are on standby unless requested by query.

- Information fusion
 - Hierarchical information fusion. Progressively lower bandwidth information over progressively larger regions.

- Multi-Resolution Processing
 - Depending on query, some tasks may require a finer spatial/temporal resolution and others lower.
 - Example: Reliable target detection might be performed with coarse space-time resolution, but classification might require finer space-time processing.
Space-time sampling

- Each object generates a time-varying, space-time signature field that can be sensed by different modalities: acoustic, seismic, thermal
- Density of nodes should be commensurate with rate of spatial variation of phenomenon
- Temporal sampling should be commensurate with required bandwidth
Space-Time Cells

- Cell is unit of processing
- How to select the size of the cells?
 - Velocity of target
 - Rate of variation of field (decay exponent)
- Ideally: dynamically adjust size depending on predictions of above.
Detection and Tracking Framework

- Nodes in boundary cells are kept in the active mode in-order to detect target.
- Manager node for cell determines location of target from energy detector output of nodes.
- Manager predicts location of target from last M locations.
- Predicted positions are activated in advance of the target arrival.
- Once target is detected in the new cell, nodes in previous cell is switched to standby.
Detection Techniques

- Goal: Find a distinct feature that can be used to cheaply (energy-wise) and reliably detect target.

- Amplitude-based
 - Detect if signal energy crosses threshold

- Frequency-based
 - Detect if a particular frequency component is dominant in the signal.
 - Detect if the signal has a high degree of periodicity.
Energy-based Detection

- Each node computes running average of signal power over a window of time.
- Sampling rate determined by target signature bandwidth
- Window size determined by expected signature duration.
- Event detected when energy exceeds threshold

![Graph showing energy over time with threshold](image)
Energy-based Detection (2)

- How to choose threshold?
 - Model noise floor as a Gaussian RV and find its mean and variance from the statistics of background noise.
 - Adjust threshold dynamically so that detector maintains constant false alarm rate

Threshold corresponding to 1% CFAR
Energy-based Detection (3)

- Final output of detector
 - Onset time when detector output exceeded threshold
 - Time of maximum signal energy (closest point of approach - CPA)
 - Detector output at time of CPA.
 - Offset time when detector output falls below threshold.

- Communicate Detections to Manager for cell.
ASIC implementations of Detector

- Periodicity estimation in hardware
 - “What is the degree of periodicity in the signal?”
 - Vehicles have high degree of periodicity

- Detection scheme
 - 1-bit per sample (0 or 1)
 - Auto-correlation-based detector (not explained here)

- Power considerations
 - <1uW power consumption
 - 20,000 times less than power consumption of zigbee radio (~20mW)

A wakeup detector for an acoustic surveillance network: Algorithms and VLSI Implementation: Goldberg, Andreaou et al, Johns Hopkins
Distributed Detection

- Relatively mature research topic
 - Lots of work in early 90s
 - Distributed Detection and Data Fusion - P. Varshney (Springer-Verilag)

- How can a cluster of n nodes reliably combine their detections?
 - Make local decision and aggregate decision
 - Local decision rule being a likelihood ratio test leads to global optimal solution.
Localization

- Manager of cell combines detections to localize target
 - Available: signal power detected at different node locations
- Assuming isotropic propagation and exponential attenuation for the target energy source,
 \[y_i(t) = \frac{s(t)}{\|r(t) - r_i\|^\alpha} \]
- Compute ratios \(y_i(t)/y_j(t) \) to eliminate the unknown \(s(t) \).
 - \(n-1 \) independent equations
 - Solve for unknown target location using non-linear Least Squares
Tracking

- Given target locations at past instants, fit data samples into dynamic model to predict future locations.
 - Assume simple linear/polynomial motion model
- Is reality that simple?
 - Variation in propagation delay between sources of same modality
 - Signal strength may be function of direction
 - Inter-target interference
Classification: What kind of target is this?

- Pick a set of features that distinguish each kind of target.
 - More specific set of features than detection!
 - Why spectral features.
 - Dominant effect consists of periodic components of vehicles. Rotating machinery (engine, gear, wheel) and tread-road impact on seismic/acoustic signatures
 - Which spectral feature?
 - FFT based Power Spectral Density
- Compare classification algorithms
 - k- nearest neighbor (non-parametric), Max-likelihood (parametric), Support Vector Machines
Target Classification: Seismic PSD

- Power Spectral Density plots of different targets by the same sensor instances
- Note the obvious differences in the prototype signatures, allowing clean separations
Target Classification – Acoustic PSD

Wheeled Vehicle

Tracked Vehicle

Figure 5a: Acoustic PSD of a wheeled vehicle (08020830 DW)

Figure 5b: Acoustic PSD of a tracked vehicle (08030800 AAF)

Power Spectral Density plots of the same target by different sensor instances
Target Classification (4) – Algorithms and Validation

- Three classification algorithms were tested
 - k-Nearest Neighbor
 - Maximum Likelihood Classifier
 - Support Vector Machine

- Details of the classifiers not discussed here

- To cross-validate the performance of the classifiers
 - Available data divided into three sets: F1, F2, F3
 - Take two sets at a time for training and one for testing:
 - Experiment A – Training: F1+F2 training; Testing: F3
 - Experiment B – Training: F2+F3 training; Testing: F1
 - Experiment C – Training: F1+F3 training; Testing: F2
Target Classification – Acoustic Performance

- SVM demonstrates best performance
- K-NN demonstrates next best performance
- ML demonstrates poorest performance

K-Nearest Neighbor (K = 1)

<table>
<thead>
<tr>
<th></th>
<th>Tracked</th>
<th>Wheeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracked</td>
<td>842 (87.80%)</td>
<td>117 (12.20%)</td>
</tr>
<tr>
<td>Wheeled</td>
<td>89 (5.74%)</td>
<td>1461 (94.26%)</td>
</tr>
</tbody>
</table>

Maximum Likelihood (Gaussian Modeling)

<table>
<thead>
<tr>
<th></th>
<th>Tracked</th>
<th>Wheeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracked</td>
<td>779 (81.23%)</td>
<td>180 (18.77%)</td>
</tr>
<tr>
<td>Wheeled</td>
<td>171 (11.03%)</td>
<td>1379 (88.97%)</td>
</tr>
</tbody>
</table>

SVM

<table>
<thead>
<tr>
<th></th>
<th>Tracked</th>
<th>Wheeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracked</td>
<td>887 (92.50%)</td>
<td>72 (7.5%)</td>
</tr>
<tr>
<td>Wheeled</td>
<td>55 (3.55%)</td>
<td>1495 (96.45%)</td>
</tr>
</tbody>
</table>
Target Classification – Seismic Performance

- SVM demonstrates best performance
- K-NN demonstrates next best performance
- ML demonstrates particularly poor performance for Wheeled Targets (77.6% correct classification rate)

SVM

<table>
<thead>
<tr>
<th></th>
<th>Tracked</th>
<th>Wheeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracked</td>
<td>197 (89.55%)</td>
<td>23 (10.45%)</td>
</tr>
<tr>
<td>Wheeled</td>
<td>24 (4.80%)</td>
<td>476 (95.2%)</td>
</tr>
</tbody>
</table>

Maximum Likelihood (Gaussian Modeling)

<table>
<thead>
<tr>
<th></th>
<th>Tracked</th>
<th>Wheeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracked</td>
<td>203 (92.27%)</td>
<td>17 (7.73%)</td>
</tr>
<tr>
<td>Wheeled</td>
<td>112 (22.4%)</td>
<td>388 (77.6%)</td>
</tr>
</tbody>
</table>
Issues and Challenges

- Collaborative Signal Processing faces many real-world hurdles
 - Uncertainty in temporal and spatial measurements
 - Depends on accuracy of time synchronization
 - Depends on accuracy of network node localization
 - Variability in experimental conditions
 - Classifications assumes that target signatures are relatively invariant
 - Node locations and orientations may result in signature variations
 - Environmental factors may alter signals
 - These parameters may need to be included in a higher dimension feature vector at cost of increased processing
Challenge: Signal Characteristics Vary for same target

- Signatures for the \textit{same} vehicle differ at different points in space and different sensor nodes.
 - Combine classifiers for better detection
 - Add more sensor modalities
Challenges - Doppler Effect

- Doppler Effect on Spectral Signatures
 - Especially since acoustic and seismic have low propagation speeds.
- \textit{Higher frequencies show greater absolute changes in frequency}

\[f = \frac{f_0}{1 - (v/v_0) \cos \alpha} \]
Classifying Multiple Targets

- Association Problem: Matching detections to targets
- Very hard problem unless
 - sufficient separation in time (targets arrive at different times at the same node) OR
 - Sufficient separation in space - Targets are detected at different nodes at the same time
- Paper focuses on the single target problem.
Future Research

- Key directions
 - Move toward more collaborative algorithms
 - Extend feature space to higher dimensions
- Intra-sensor collaboration: modal fusion
 - Combine information from multiple sensors in single node
- Inter-sensor collaboration: centralized processing
 - Report raw time series data or statistics to a “central” node
- Doppler-based composite hypothesis testing
 - Incorporate target velocity, CPA distance, and angle between secant and radius (vertex is target’s position)
Remarks

- Paper focuses on classification. Tracking problem is mostly conceptual (although there are some interesting ideas)
- No simulations or empirical evidence supporting single or multiple target tracking
- Hardest problem in classification is multi-target classification
 - Overlapping signatures (disambiguation problem)
 - Tracking multiple targets
- Max signal does not always occur at CPA
How to model event-based systems

- Detection: Low-power (threshold-based)
 - P (false positive)
 - P (false negative)

- Localization
 - Time of flight, angle of arrival, signal power
 - Location estimate + error distribution

- Tracking
 - Use location to determine track
 - Uncertainty: location uncertainty + track uncertainty

- Classification
 - Multiple modalities. Find distinguishing features
 - P (false positive)
 - P (false negative)