Disjoint Sets

R. J. Renka

Department of Computer Science & Engineering
University of North Texas

11/18/2013
Problem
Given a set S with N elements, store a partitioning of S into disjoint subsets such that operations union and find are efficiently implemented, where $\text{find}(x)$ returns the name of the set that contains $x \in S$, and $\text{union}(x, y)$ replaces the sets containing x and y by their union when x and y are in different sets; i.e., when $\text{find}(x) \neq \text{find}(y)$.

Example applications include Kruskal’s Algorithm and the partitioning of a set of variables into subsets associated with types by a compiler.

8.1 Equivalence Relations The subsets may be thought of as equivalence classes associated with an equivalence relation R on S, where R is

1. **Reflexive**: aRa for all $a \in S$,
2. **Symmetric**: aRb if and only if bRa, and
3. **Transitive**: aRb and bRc implies that $a Rc$.

Examples of equivalence relations are connections between electrical components and cities being in the same country. Given an equivalence relation defined on S, the equivalence problem is to quickly decide if a is related to b for arbitrary a and b in S. A symmetric N by N matrix of Boolean variables solves the problem, but is not easily updated to reflect transitivity if an equivalence class changes. The union/find algorithm is *dynamic*, allowing changes in the equivalence classes via the union operation.
Assume the elements of S are designated by 0 to $N - 1$. An array containing set names would give constant-time \texttt{find} but require $\Theta(N)$ time for \texttt{union}. A data structure that enables constant-time \texttt{union} represents each set in a \textit{forest} as a tree stored implicitly in an array S of length N. The only information needed for each node is a parent link with -1 as the parent of the root: $S[i] =$ parent of i. The name of the set returned by \texttt{find} is the root of the tree.
Figures 8.1-8.3

Figure 8.1 Eight elements, initially in different sets

Figure 8.2 After $\text{union}(4, 5)$

Figure 8.3 After $\text{union}(6, 7)$
Figure 8.4 After union(4, 6)

Figure 8.5 Implicit representation of previous tree
class DisjSets
{
 public:
 explicit DisjSets(int numElements);

 int find(int x) const;
 int find(int x);
 void unionSets(int root1, int root2);

 private:
 vector<int> s;
};

Figure 8.6 Disjoint set class interface
/**
 * Construct the disjoint sets object.
 * numElements is the initial number of disjoint sets.
 */
DisjSets::DisjSets(int numElements) : s(numElements)
{
 for(int i = 0; i < s.size(); i++)
 s[i] = -1;
}

Figure 8.7 Disjoint set initialization routine
/*
 * Union two disjoint sets.
 * For simplicity, we assume root1 and root2 are distinct
 * and represent set names.
 * root1 is the root of set 1.
 * root2 is the root of set 2.
 */

void DisjSets::unionSets(int root1, int root2)
{
 s[root2] = root1;
}

Figure 8.8 union (not the best way)
Figure 8.9

A simple disjoint set find algorithm

```cpp
/**
 * Perform a find.
 * Error checks omitted again for simplicity.
 * Return the set containing x.
 */
int DisjSets::find( int x ) const
{
    if( s[ x ] < 0 )
        return x;
    else
        return find( s[ x ] );
}
```
8.4 Smart Union Algorithm

The time for $\text{find}(x)$ is proportional to the depth of x — $O(N)$ in the worst case: make the large tree a subtree of a 1-element tree at each step.

A better approach is **union-by-size** — make the smaller tree a subset of the larger. Then the depth of any node is never more than $O(\log N)$ since a node starts at depth 0 and when its depth increases due to a union, it is placed in a tree that is at least twice as large; hence its depth can be increased at most $\log N$ times.

- Store negative size as the array entry of each root.
- A union sets the new size to the sum of the old sizes.
- A sequence of M operations now has $O(M)$ average time and worst case $O(M \log N)$ time.
The forest above could result from the sequence union(4,5), union(6,7), union(4,6), union(3,4). Without the size heuristic, the tree could be deeper as depicted in Fig. 8.11.
Figure 8.11 Result of an arbitrary union
Figure 8.12 Worst-case tree for $N = 16$
An alternative is **union-by-height** in which we store the negative height minus one instead of the negative size.

- Make the shallow tree a subtree of the deeper tree.
- Initial values are again -1.
- Height increases by 1 only when two trees of the same height are joined.

```
<table>
<thead>
<tr>
<th>size</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>4</th>
<th>-5</th>
<th>4</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>height</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>-3</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
```
Figure 8.13

```c
/**
 * Union two disjoint sets.
 * For simplicity, we assume root1 and root2 are distinct
 * and represent set names.
 * root1 is the root of set 1.
 * root2 is the root of set 2.
 */

void DisjSets::unionSets( int root1, int root2 )
{
    if( s[ root2 ] < s[ root1 ] ) // root2 is deeper
        s[ root1 ] = root2;       // Make root2 new root
    else
    {
        if( s[ root1 ] == s[ root2 ] )
            s[ root1 ]--;          // Update height if same
        s[ root2 ] = root1;       // Make root1 new root
    }
}
```

Figure 8.13 Code for union-by-height (rank)
While linear on average ($O(M)$ for a sequence of M operations) the worst case of $O(M \log N)$ can often occur; e.g., put all the sets in a queue and repeatedly dequeue the first two sets and enqueue the union.

Regardless of the method for union, the worst-case running time can be reduced by performing **path compression** during $\text{find}(x)$: change the parent to the root for every node on the path from x to the root.

Path compression changes heights but rather than recompute them, they simply become estimated heights, referred to as ranks.
Figure 8.14 An example of path compression

The above tree is the result of path compression after find(14) on the generic worst-case tree of Fig. 8.12. Two link changes make nodes 12 and 13 one position closer to the root and nodes 14 and 15 two positions closer.
/**
 * Perform a find with path compression.
 * Error checks omitted again for simplicity.
 * Return the set containing x.
 */

int DisjSets::find(int x)
{
 if(s[x] < 0)
 return x;
 else
 return s[x] = find(s[x]);
}

Figure 8.15 Code for disjoint set find with path compression