Let A and B denote 3 by 3 matrices, and let c and d denote real column vectors:

$$
A = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
B = \begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{pmatrix}
\quad
c = \begin{pmatrix}
 c_1 \\
 c_2 \\
 c_3
\end{pmatrix}
\quad
d = \begin{pmatrix}
 d_1 \\
 d_2 \\
 d_3
\end{pmatrix}
$$

1. Specify the following in terms of matrix and vector components.

(a) Vector sum $c + d$
(b) Matrix sum $A + B$
(c) Matrix-vector product Ac
(d) Matrix-matrix product AB
(e) Determinant $|A|$
(f) Identity matrix I
(g) Matrix transpose A^T
(h) Dot product $c^T d$
(i) Outer product cd^T
(j) Vector cross product $c \times d$
(k) Vector Euclidean norm $\|c\|$

2. Specify the following in terms of A and B.

(a) transpose of AB
(b) inverse of AB

3. Specify the following conditions as matrix-vector equations.

(a) c is orthogonal to d
(b) c and d are orthonormal vectors
(c) A is an orthogonal matrix
(d) A is a symmetric matrix
(e) A^{-1} is the inverse of A