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Abstract

We have observed that the term ’Sobolev gradient’ is used more often

than it is understood. Also, the term is often used with no apparent

awareness of its origin. This short note is an attempt to correct both of

these situations.

1 Introduction

John W. Neuberger coined the term ’Sobolev gradient’ and began developing
the method in the 1970’s, but his first journal article on the subject was not
published until 1985 ([4]). The primary reference for his work is now [5]. The
Sobolev gradient method is a gradient descent method designed to find critical
points of a (discretization of a) functional of the form φ(u) =

∫

Ω
F (Du), where

D is a differential operator and u is an element of a Sobolev space H for which
F (Du) is integrable. The functional represents a variational formulation of a
differential equation, and any differential equation G(Du) = 0 can be treated as
a least squares variational problem by taking F (Du) = G(Du)2/2 if no better
alternative is available. While the primary application is numerical solution
of nonlinear partial differential equations, the method has been extended to
geometric modeling problems ([6], [7]), inverse problems ([3]), optimal control
problems ([1]), and image processing problems ([8]).

Section 2 presents a brief outline of the key ideas in the context of Sobolev
spaces, and Section 3 treats the discretized problem as one of numerical opti-
mization. As a numerical optimization method, the key idea is preconditioned
gradient descent, and the efficacy of the method is clear without any considera-
tion of function spaces. Unlike other methods for preconditioning, however, the
Sobolev gradient method arises in a very natural and elegant manner from the
Sobolev space setting. Refer to [2] for an extensive discussion of preconditioning.

2 Function Space Setting

In order to make the ideas concrete, we apply the method to a simple ex-
ample problem — Poisson’s equation: uxx + uyy = f on a two-dimensional
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domain Ω with Dirichlet boundary conditions. Taking u ∈ H ≡ H
1,2(Ω) and

Du = (u, ux, uy) ∈ L2(Ω)3, we have F (Du) = (u2
x + u2

y)/2 + fu integrable for
f ∈ L2(Ω). Then Poisson’s equation is the Euler-Lagrange equation associated
with φ(u) =

∫

Ω
F (Du). We show below that it is obtained by setting the L2

gradient of φ to zero. Note, however, that this involves an implicit assumption
that φ has a gradient in L2(Ω) or, equivalently, that u ∈ H

2,2(Ω). Since the
variational formulation imposes a weaker restriction on u, it is referred to as
a weak formulation. In order to treat the boundary conditions, we use an ini-
tial estimate that satisfies the conditions and restrict perturbations of u to the
subspace H0 of functions that satisfy homogeneous boundary conditions.

The Fréchet derivative φ′(u), when it exists, is the bounded linear functional
defined by

φ′(u)h = lim
α→0

1

α
[φ(u + αh) − φ(u)]

for h ∈ H0. For the example problem, we have

φ′(u)h = lim
α→0

1

2α

∫

Ω

[(ux + αhx)2 + (uy + αhy)2 + 2f(u + αh) −

(u2
x + u2

y + 2fu)]

= lim
α→0

1

2α

∫

Ω

[2α(uxhx + uyhy + fh) + O(α2)]

=

∫

Ω

[uxhx + uyhy + fh] ∀h ∈ H0. (1)

The Sobolev gradient ∇Sφ(u) is defined to be the unique element of H0 that
represents the bounded linear functional:

φ′(u)h = 〈∇Sφ(u), h〉H ∀h ∈ H0.

Note that boundedness of φ′(u) is related to existence of ∇Sφ(u) ∈ H0 by

|φ′(u)h| ≤ ‖∇Sφ(u)‖H‖h‖H ∀h ∈ H0.

To show that our example functional is C1 (Fréchet differentiable for all u), and
the Sobolev gradient exists, denote by P the (self-adjoint) orthogonal projection

of L2(Ω)3 onto







Dk =





k
kx

ky



 : k ∈ H0







, and define π





k1

k2

k3



 = k1 for

k1, k2, k3 ∈ L2(Ω). Then, from (1),

φ′(u)h =

〈





h
hx

hy



 ,





f
ux

uy





〉

L
3

2

=

〈

PDh,





f
ux

uy





〉

L
3

2

=

〈

Dh,P





f
ux

uy





〉

L
3

2

=

〈

h, πP





f
ux

uy





〉

H

∀h ∈ H0.
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Hence

∇Sφ(u) = πP





f
ux

uy



 ∈ H0.

(Note that D was chosen so that 〈u, v〉H ≡ 〈Du,Dv〉L3

2

.) A more computation-

ally amenable expression for ∇Sφ(u) will be derived in the next section. Our
purpose here is to show that the Sobolev gradient exists when the L2 gradient
may not. In order for φ′(u) to be bounded in the L2 norm, u must be in H

2,2(Ω)
so that, integrating by parts (or applying Green’s theorem) in (1), we obtain

φ′(u)h = −

∫

Ω

(uxx + uyy − f)h

= 〈−(uxx + uyy + f), h〉L2

= 〈∇φ(u), h〉L2
∀h ∈ H0,

giving the L2 gradient ∇φ(u) = −(uxx + uyy) + f .

3 Numerical Setting

Consider a gradient descent method for minimizing a functional φ defined on a
Hilbert space H = H

1,2(Ω). The method of steepest descent is defined by the
iteration

uk+1 = uk − αk∇φ(uk) (2)

for u0 ∈ H and some means of choosing step-lengths αk. In order that the iter-
ates remain in H, the gradients ∇φ(uk) must be elements of H; i.e., derivatives
must be compatible with the metric (inner product and corresponding norm)
on H. More precisely, the directional derivative of φ at u in the direction h de-
fines the Sobolev gradient ∇Sφ(u) by φ′(u)h = 〈∇Sφ(u), h〉H ∀h ∈ H. Stated
differently, the negative gradient of φ at u is the direction of steepest descent
because it maximizes the decrease in φ per unit change in u. The norm used to
measure units in the domain of φ strongly influences the gradient direction.

Now consider a finite difference discretization of the problem. Although
variational problems are usually discretized by a finite element method, finite
differencing is simpler and, in some cases, much more efficient ([7]) than finite
elements. We retain the above notation but now have uk ∈ R

N for N grid
points in Ω (or N/m grid points if u has m components associated with each grid
point). Let H0 be the subspace of vectors that satisfy homogeneous boundary
conditions, so that by restricting gradients to H0, the iterates uk satisfy the
same boundary conditions satisfied by u0.

Simply replacing the Sobolev gradient by the ordinary gradient (vector of
partial derivative values) does not lead to an effective method. The ordinary
gradient is associated with the Euclidean inner product which (up to a scale fac-
tor on a regular grid) is the discretization of the L2 inner product. Hence, the
ordinary gradient is essentially a discretization of the L2 gradient, and it lacks
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the required smoothness of a discretized Sobolev gradient. The undiscretized
functional φ involves derivatives of u and is therefore not well-defined on L2(Ω).
As the mesh width decreases, the discretization approaches an ill-defined prob-
lem. In short, standard descent methods are completely lacking in integrity for
minimizing functionals that involve derivatives.

In order to properly discretize the Sobolev gradient, we must discretize the
Sobolev inner product. To this end, denote by D the M by N matrix rep-
resenting finite difference approximations to the appropriate derivatives, along
with values obtained by averaging if necessary. Assume that D has linearly
independent columns so that DT D is positive definite as well as symmetric. In
practice it may be necessary to restrict DT D to H0 and to follow its application
by projection onto H0. We now have a discrete Sobolev inner product:

〈g, h〉H = (Dg)T (Dh) = gT DT Dh.

We can use the two inner products to relate the two gradients:

φ′(u)h = ∇φ(u)T h = hT∇φ(u)

and
φ′(u)h = 〈∇Sφ(u), h〉H = ∇Sφ(u)T DT Dh = hT DT D∇Sφ(u)

for all h ∈ H0, implying that

∇Sφ(u) = (DT D)−1∇φ(u). (3)

The Sobolev gradient is thus computed by solving the linear system with the
sparse symmetric positive definite matrix DT D and the ordinary gradient as
right hand side. Note that DT D is a discretized second derivative operator
(typically of the form I − ∆ for identity I and Laplacian ∆), and its inverse is
therefore a smoothing operator, where smoothness is measured by the number
of continuous derivatives. It is shown in [5] that for a very general pair of com-
patible inner products, the corresponding gradients are related by an operator
that has the properties of a Laplacian.

We now discuss an alternative perspective — the discretized Laplacian as a
preconditioner. Assuming φ is twice continuously differentiable in a neighbor-
hood of u, we have the Taylor series

φ(u + αh) = φ(u) + αhT∇φ(u) +
α2

2
hT G(u)h + O(α3), (4)

where G(u) denotes the Hessian of φ at u. Let L be a symmetric positive definite
order-N matrix so that 〈g, h〉L = gT Lh defines an inner product. Then there
exists a corresponding gradient ∇Lφ(u) and Hessian GL(u) such that

φ(u + αh) = φ(u) + α〈h,∇Lφ(u)〉L +
α2

2
〈h,GL(u)h〉L + O(α3)

= φ(u) + αhT L∇Lφ(u) +
α2

2
hT LGL(u)h + O(α3) (5)
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Figure 1: Ellipses {h ∈ R
2 : φ(u∗) + 1

2
hT G(u∗)h = k}

for all α ∈ R, h ∈ R
N . Hence, equating terms in (4) and (5),

∇Lφ(u) = L−1∇φ(u) and GL(u) = L−1G(u).

Let u = u∗ be a critical point at which ∇φ = 0 so that

φ(u∗ + αh) = φ(u∗) +
α2

2
hT G(u∗)h + O(α3).

For small α, the level sets defined by φ(u∗ + αh) = k, k a constant, are approx-
imated by the conic sections

{u∗ + h : φ(u∗) +
1

2
hT G(u∗)h = k}.

The behavior of φ in the vicinity of u∗ is governed by the eigenvalues of G(u∗).
If they are all positive, the conic sections are hyperellipsoids, and u∗ is a local
minimum. This is depicted for the case N = 2 in Figure 1. The curves have
been translated by −u∗, and the (orthonormal) eigenvectors v1 and v2 associated
with λ1 = 1 and λ2 = 4 are displayed.

As the condition number of the Hessian λmax/λmin increases, the location
of u∗ becomes more sensitive to perturbations of the data, and more difficult
to compute accurately. As the condition number approaches 1, on the other
hand, the level sets become circular (or approach hyperspherical in general),
and the negative gradient direction at every point is toward the minimizer u∗.
Note, however, that unless φ is quadratic, so that G(u) is constant, the level
sets deviate from ellipsoidal with distance from the critical point. The purpose
of the preconditioner L is to reduce the condition number of the Hessian. Since
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each descent step requires solution of the linear system L∇Lφ(uk) = ∇φ(uk),
it is advantageous to choose preconditioners for which the systems are easily
solved. We therefore have a tradeoff between cheaply solved systems but with
many descent steps due to ineffective preconditioning, and more expensive but
fewer descent steps. The two extremes are L = I, I denoting the identity (no
preconditioning), and L = G(uk) at step k, in which case GL = I is perfectly
conditioned, and the descent iteration is

uk+1 = uk − αk∇Lφ(uk)

= uk − αkG(uk)−1∇φ(uk).

With the optimal step-length αk = 1, this is a Newton iteration. Newton’s
method is clearly the optimal choice when it is viable. However, G(uk) may not
be positive definite except in a small neighborhood of a local minimum. Also,
for large-scale problems such as the discretized partial differential equations of
interest here, the Hessian is often unavailable or is too expensive to compute
or to store. The preconditioner used by the Sobolev gradient method L =
DT D on the other hand can always be made positive definite and, with the
exception of extremely complex or high-order differential operators, is generally
well-conditioned, making the linear systems inexpensive to solve. Due to its
regular structure, DT D need not be stored at all in most cases. For many
problems the best strategy is to start with a Sobolev gradient method and then,
if high accuracy is required, switch to a Newton iteration when sufficiently close
to a local minimum.
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