Computing with Hereditarily Finite Sequences

Paul Tarau
University of North Texas

PADL 2012
Hereditarily Finite Sequences - are a kind of trees - but a bit less colorful than this one...
Imagine that you are at a place where

- You are given ordered rooted trees with empty leaves.
- You are asked: can you do computations with them?
- Can you do computations with them efficiently?
- Can you make sure that no tree is wasted?
- And the really hard one: which movie that hopeless tree is from?
What Dreams May Come - 1998 movie -

• our game: the “Tracker” provides the challenges ...
• ontology: the trees have empty leaves (no bananas!)
Can you compute using trees with empty leaves?

- Yes - but that’s just slow successor arithmetic...
-
-
-
-
-
-
-

Tuesday, January 24, 12
Can you compute as fast as binary arithmetic?

- Yes - but I will waste an infinite number of trees...

- $0 = []$
- $1 = [[]]$
- $[0,0,1,0,1]$ would look like this:
- $[[[],[]],[],[],[],[]]$
Can you compute without wasting any tree?

- yes, but it is quite tricky (see next slides, and the paper ...)
- a bijection between trees with empty leaves and natural numbers will be used
- after defining successor and predecessor we can even mimic the additive and multiplicative semigroup structure of N!
A bijection between finite sequences and natural numbers

cons(X,Y,XY):-X>=0,Y>=0,XY is (1+(Y<<1))<<X.

hd(XY,X):-XY>0,P is XY \ 1,hd1(P,XY,X).

hd1(1,_,0).
hd1(0,XY,X):-Z is XY>>1,hd(Z,H),X is H+1.

tl(XY,Y):-hd(XY,X),Y is XY>>(X+1).

null(0).

• cons(X,Y,Z), hd(Z,X), tl(Z,Y) <=> Z = 2^X*(2*Y+1)
• given Z, the Diophantine eq. has one solution X,Y
• this gives a bijection between N and [N]

Tuesday, January 24, 12
You can do everything when walking over heads (and tails, not shown!)
From N to \([N]\) and back

\[
\text{list2nat}([], 0).
\]
\[
\text{list2nat}([X|Xs], N):=\text{list2nat}(Xs, N1), \text{cons}(X, N1, N).
\]

\[
\text{nat2list}(0, []).\]
\[
\text{nat2list}(N, [X|Xs]):=N>0, \text{hd}(N, X), \text{tl}(N, T), \text{nat2list}(T, Xs).
\]

?- \text{nat2list}(2012, Ns), \text{list2nat}(Ns, N).
Ns = \[2, 0, 0, 1, 0, 0, 0, 0\],
N = 2012
Recursing over the “N to $[N]$ bijection” gives:

- ranking and unranking bijections between N and hereditarily finite sequences - seen here as trees with ‘[]’ leaves

?- nat2hfseq(2012, HFSEQ), hfseq2nat(HFSEQ, N).
HFSEQ = [[[[]]], [], [], [[]], [], [], [], []],
N = 2012
Successor \((s)\) and predecessor \((p)\) on hereditarily finite sequences

\[
s([],[]). \\
s([[[\text{A}\text{|B}\text{s}]]]\text{Ds}],[[],\text{ClDs}]):-p([\text{A}\text{B}\text{s}],\text{C}). \\
s([\text{C}\text{|B}\text{s}]\text{Es}],[[\text{D}\text{Es}],[\text{A}\text{E}\text{s}]],s(\text{A},[\text{C}\text{B}\text{s}]).
\]

\[
p([],[]). \\
p([\text{C}\text{|B}\text{s}]\text{Ds}],[[\text{A}\text{B}\text{s}]],s([\text{A}\text{B}\text{s}],[\text{C}\text{B}\text{s}])].
\]

% stream of “natural numbers” as enumeration of trees
\[
n([]). \\
n(N):-n(P),s(P,N).
\]

logic languages make some proofs obvious:

\(s\) and \(p\) are inverses - just by looking at the definitions!
Let’s do some arithmetic. But we do not want to work with these ugly tree-shaped things!

We can build an API emulating “bijective base-2 arithmetic”!

% e->0
% o(X)->2X+1
% i(X)->2X+2

\[s(e, o(e)). \]
\[s(o(X), i(X)). \]
\[s(i(X), o(Y)) :- s(X, Y). \]

\[a(e, e, e). \]
\[a(e, o(X), o(X)). \]
\[a(e, i(X), i(X)). \]
\[a(o(X), e, o(X)). \]
\[a(i(X), e, i(X)). \]
\[a(o(X), o(Y), i(R)) :- a(X, Y, R). \]
\[a(o(X), i(Y), o(S)) :- a1(X, Y, S). \]
\[a(i(X), o(Y), o(S)) :- a1(X, Y, S). \]
\[a(i(X), i(Y), i(S)) :- a1(X, Y, S). \]

\[a1(X, Y, Z) :- a(X, Y, T), s(T, Z). \]

“bijective base to arithmetic” is essentially the same thing as the language of systems like S2S or WS2S (Rabin 68): the free monoid \{0,1\}*.

It is also an initial algebra on \{e/0, o/1, i/1\}.
An API emulating bijective base-2 arithmetic

- recognizers
- constructors + destructor

\[
o([[]]) \quad \text{% is odd}
i([[-|]]) \quad \text{% is even} \iff 0
\]

\[
o(X, [[]|X]). \quad \text{X->2*X+1}
i(X,Y) :- \text{s([[]|X],Y).} \quad \text{X->2*X+2}
\]

% destructor: undo the effect of o,i
\[
\text{o([[]]|Xs],Xs).} \quad \text{% inverse of o}
\]
\[
\text{r([[[|Xs]|Ys],Rs):- % inverse of i}
p([[[|Xs]|Ys],[[]]|Rs]).}
\]
Using the API: fast conversion from/to ordinary numbers

?- n2s(42,S),s2n(S,N).
S = [[[[]], [[]], [[]]]],
N = 42

?-n(X),s2n(X,N).
X = [[]], N = 0 ;
X = [[[]], N = 1 ;
X = [[[[]]], N = 2 ;
X = [[[]], [[]], N = 3 ;

- it converts in time/space proportional to the binary representation
- we can enumerate the infinite stream of trees
It’s time to do some real work now!

ADDITION - efficiently

\begin{align*}
a([], Y, Y). \\
a([X|Xs], [], [X|Xs]). \\
a(X, Y, Z) & : - o(X), o(Y), a(X,Y,R), i(R,Z). \\
a(X, Y, Z) & : - o(X), i(Y), a(X,Y,R), a2(R,Z). \\
a(X, Y, Z) & : - i(X), o(Y), a(X,Y,R), a2(R,Z). \\
a(X, Y, Z) & : - i(X), i(Y), a(X,Y,R), s(R,S), i(S,Z). \\
a1(X,Y,R) & : - r(X,RX), r(Y,RY), a(RX,RY,R). \\
a2(R,Z) & : - s(R,S), o(S,Z).
\end{align*}
Adding some large numbers (in tree form)

?-n2s(12345678901234567890,A),
 n2s(10000000000000000000,B),
 a(A,B,S),
 s2n(S,N).

A = [[[[]]], [[[[]]]], [[[]]], [], [[]], [[]], [[]][...]], [], [[]|...]],

B = [[[[]]], [[]], [[[[]]]], [[[]]], [], [], [], [], [[]], [[]], [[]], [[]], [[]], [[]][...][...]], [[]][...][...]],

S = [[[[]]], [[[[]]]], [[[]]], [], [[]], [[]], [[]], [[]][...]], [], [[]|...]],

N = 22345678901234567890 .
Multiplication

m(□, _, □).
m(_, □, □).
m(X, Y, Z):-
p(X, X1),
p(Y, Y1),
m0(X1, Y1, Z1),
s(Z1, Z).

m0(□, Y, Y).
m0(□ |X], Y, □ |Z]):-
m0(X, Y, Z).
m0(X, Y, Z):-
i_(X), r(X, X1),
m0(X1, Y, Z1),
a(Y, □ |Z1], Y1),
s(Y1, Z).

?- n2s((10^100), Googol),
m(Googol, Googol, S),
s2n(S, N).

Googol = [[[[[[]]], [[[[]]]], []]],
[[[]], [[[]]], [[[]]], [[[]]], [[[]]], [[[]]], ...
]

S = [[[[], []], [[[[]]]], [], [], [], [],
[[[]]]], [], [], [[[]]],
[[[]]], [] | ...]

N = 100000000................
.... 00000000000000000000
Why are these operations really cooler than they seem at a first sight?

- These are not just an addition and a multiplication on a trees - they are the addition and the multiplication, i.e.
- The addition and multiplication operations $a/3$ and $m/3$ induce an isomorphism between the semirings with commutative multiplication $<\mathbb{N},+,*>$ and $<T,a,m>$.
Next: a fly over a few other tree-like objects
Binary Trees - seen as Goedel’s System T types

% successor
\[s(e, (e->e)). \]
\[s(((A->B)->D), (e->(C->D))) :- p((A->B), C). \]
\[s((e->D), ((C->B)->E)) :- s(D, (A->E)), s(A, (C->B)). \]

% predecessor
\[p((e->e), e). \]
\[p((e->(C->D)), ((A->B)->D)) :- s(C, (A->B)). \]
\[p(((C->B)->E), (e->D)) :- p((C->B), A), p((A->E), D). \]

one can also see such rooted ordered binary trees as:
- initial algebra on \{e/0,->/2\}
- free magma generated by \{e\}
Successor (s) and predecessor (p) on a Haskell data type

data T = T | C T T deriving (Eq, Read, Show)

c' (C x _) = x
c'' (C _ y) = y

s T = C T T
s (C T y) = C (s (c' (s y))) (c'' (s y))
s (C x y) = C T (C (p x) y)

p (C T T) = T
p (C T (C x y)) = C (s x) y
p (C x y) = C T (p (C (p x) y))
Types trees can act as natural numbers and we can compute with them!

% the stream of types
?- n_(T),t2n(T,N).

T = e, N = 0 ;
T = (e->e), N = 1 ;
T = ((e->e)->e), N = 2 ;
T = (e->e->e), N = 3 ;
T = (((e->e)->e)->e), N = 4 ;
...

- arithmetization of types is interesting - for instance, one can do type-level arithmetic with this representation

- **open questions:**
 - can we redo Dana Scott’s power domains (Pomega) - as type trees cover both natural numbers in N and finite sets in [N]?
 - what have a simple universal encoding of data types and computations - what else can we do with it?
% the TxB<T bijection: pair and unpair are total relations
% pair(X,Y,Z) represents Z=2^X*(2*Y+1)-1

unpair(e, e,e).
unpair(((A->B)->D), e,(C->D)) :- pair(A,B, C).
unpair((e->D), (C->B),E) :- unpair(D, A,E), unpair(A, C,B).

pair(e,e, e).
pair(e,(C->D), ((A->B)->D)) :- unpair(C, A,B).
pair(((C->B),E, (e->D)) :- pair(C,B, A), pair(A,E, D).

% successor+predecessor derived from pair,unpair
% intuition: (X->Y) represents 2^X*(2*Y+1)

s(Z,(X->Y)) :- unpair(Z,X,Y).
p((X->Y),Z) :- pair(X,Y,Z).
Arithmetic with types - addition

% constructors, providing a bijective base-2 view
o(X,(e->X)).
i(X,Z) :- o(X,Y),s(Y,Z).

% recongnizers / deconstructors
o_((e->Y),Y).
i_(X,X2) :- p(X,X1),o_(X1,X2).

% addition
add(e,Y,Y).
add((X->Xs),e,(X->Xs)).
add(X,Y,Z):-o_(X,X1),o_(Y,Y1),add(X1,Y1,R),i(R,Z).
add(X,Y,Z):-o_(X,X1),i_(Y,Y1),add(X1,Y1,R),s(R,S),o(S,Z).
add(X,Y,Z):-i_(X,X1),o_(Y,Y1),add(X1,Y1,R),s(R,S),o(S,Z).
add(X,Y,Z):-i_(X,X1),i_(Y,Y1),add(X1,Y1,R),s(R,S),i(S,Z).
Subtraction, comparison, half, double

% subtraction
sub(X,e,X).
sub(X,Y,Z):-o_(X,X1),o_(Y,Y1),
 sub(X1,Y1,R),o(R,R1),p(R1,Z).
sub(X,Y,Z):-o_(X,X1),i_(Y,Y1),
 sub(X1,Y1,R),o(R,R1),p(R1,R2),p(R2,Z).
sub(X,Y,Z):-i_(X,X1),o_(Y,Y1),
 sub(X1,Y1,R),o(R,Z).
sub(X,Y,Z):-i_(X,X1),i_(Y,Y1),
 sub(X1,Y1,R),o(R,R1),p(R1,Z).

% comparison
cmp(X,X,eq).
cmp(X,Y,lt):-sub(Y,X,(_->_)).
cmp(X,Y,gt):-sub(X,Y,(_->_)).

% double and half
double(X,Y):-pair(e,X, Y).
half(Y,X):-unpair(Y, e,X).
Multiplicity and power

% multiplication
multiply(e,_,e).
multiply((_->_),e,e).
multiply((HX->TX),(HY->TY),(H->T)):-add(HX, HY, H),
multiply((e->TX),TY,S),
add(TX,S,T).

% power
power(_,e,(e->e)).
power(X,Y,Z):-o_(Y,Y1),multiply(X,X,X2),
 power(X2,Y1,P),
multiply(X,P,Z).
power(X,Y,Z):-i_(Y,Y1),multiply(X,X,X2),
 power(X2,Y1,P),
multiply(X2,P,Z).

% power of 2 - constant time !
exp2(X,(X->e)).
Somewhat trickier: (fast) division

% division and reminder
divide(X,Y,D):-div_and_rem(X,Y,D,_).
reminder(X,Y,R):-div_and_rem(X,Y,_,R).

div_and_rem(X,Y,e,X):-cmp(X,Y,lt).
div_and_rem(X,Y,D,R):-Y=(_->_),divstep(X,Y,QT,RM),
 div_and_rem(RM,Y,U,R),
 add((QT->e),U,D).

divstep(N,M,Q,D):-try_to_double(N,M,e,Q),
 multiply((Q->e),M,P),
 sub(N,P,D).

try_to_double(X,Y,K,R):-cmp(X,Y,Rel),
 try_to_double1(Rel,X,Y,K,R).

try_to_double1(lt,_,_,K,R):-p(K,R).
try_to_double1(Rel,X,Y,K,R):-
 member(Rel,[eq,gt]),
 double(Y,Y2),s(K,K1),
 try_to_double(X,Y2,K1,R).
We can also compute with parenthesis languages!

• 0,1 strings can represent our trees succinctly ~≈ 2 bits/node

• they are uniquely decodable - see Kraft’s inequality in the paper

• and we can also compute with any of the members of the
 Catalan family - dozens of interesting combinatorial objects -

```prolog
pars_hfseq(Xs,T) :- pars2term(0,1,T,Xs,[]).
pars2term(L,R,Xs) --> [L],pars2args(L,R,Xs).
pars2args(_,R,[]) --> [R].
pars2args(L,R,[X|Xs]) --> pars2term(L,R,X),pars2args(L,R,Xs).
```

?- pars_hfseq([0,0,1,0,1,1],T),pars_hfseq(Ps,T).
T = [[], []],
Ps = [0, 0, 1, 0, 1, 1]
And what about correctness?

- some proofs using Coq at: http://logic.csci.unt.edu/tarau/research/2011/Bij2.v.txt
- a Mathematica script with visualizations at: http://logic.csci.unt.edu/tarau/research/2010/iso.nb
Future work

- This can turn out to be practical - the representation handles huge numbers - towers of exponents that overflow binary representations

- Java and C prototypes for an arbitrary length integer package using binary trees at http://logic.csci.unt.edu/tarau/research/bijectiveNSF
Conclusion

• logic programming provides a flexible framework for modeling mathematical concepts from fields as diverse as combinatorics, formal languages, type theory and coding theory

• we have shown algorithms expressing arithmetic computations symbolically, in terms of hereditarily finite sequences, System T types, parenthesis languages

• literate Prolog program, code at: http://logic.cse.unt.edu/tarau/research/2012/padl12.pl

• extra code shown in these slides at: http://logic.cse.unt.edu/tarau/research/2012/gtypes.pl
Questions?

• (image from Kurosawa - Dreams - 1990)