Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

Paul Tarau

1Department of Computer Science and Engineering
University of North Texas

ICLP 2012
curious about the following open problem:

- Cantor’s a pairing function: a bijection $f_2 : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- its inverse has a well known, simple closed formula
- it has a generalization to k-tuples, a bijection $f_k : \mathbb{N}^k \rightarrow \mathbb{N}$
- its inverse, $f_k^{-1} : \mathbb{N} \rightarrow \mathbb{N}^k$ can be computed inefficiently by enumerating all possibilities
- the problem: can we find an efficient way to compute it?
- why is this important: it is conjectured that, up to a permutation, it is the only such function that is expressed by a polynomial formula

logic programming is an ideal paradigm for solving combinatorial search (and generation!) problems

- backtracking and unification naturally automate search algorithms
- well-understood program transformation techniques
- an interactive environment, ideal for incremental development

⇒ derive a solution by refining a declarative specification
Outline

- the direct formula
- the case k=2 and some geometric intuitions
- the specification of the inverse
- the refinement process
- the final algorithm
- applications and conclusion
The Direct Formula for the Generalized Cantor n-tupling bijection, K_n

$$K_n(x_1, \ldots, x_n) = \binom{n-1+x_1+\ldots+x_n}{n} + \ldots + \binom{1+x_1+x_2}{2} + \binom{x_1}{1}$$

- $\binom{n}{k}$: binomial coefficient, “n choose k”
- $\binom{n}{k}$ is easy to compute, but care is taken to use a tail recursive predicate (see paper)

EXAMPLE: $K_3(x_1, x_2, x_3) = \binom{2+x_1+x_2+x_3}{3} + \binom{1+x_1+x_2}{2} + \binom{x_1}{1}$

- $K_3(2, 0, 3) = \binom{2+2+0+3}{3} + \binom{1+2+0}{2} + \binom{2}{1} = \binom{7}{3} + \binom{3}{2} + \binom{2}{1}$
- $K_3(2, 0, 3) = 35 + 3 + 2 = 40$

To try it out, one can use the Prolog code at
http://logic.cse.unt.edu/tarau/research/2012/pcantor.pl

?- from_cantor_tuple1([2,0,3],N).
N = 40.
The Problem: Computing the Inverse

The problem, in general terms: find a solution of the Diophantine equation

\[
\begin{pmatrix} x_1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 + x_1 + x_2 \\ 2 \end{pmatrix} + \ldots + \begin{pmatrix} n - 1 + x_1 + \ldots + x_n \\ n \end{pmatrix} = z \quad (1)
\]

and prove that it is unique.

- Unfortunately, solving an arbitrary Diophantine equation is Turing-equivalent (this is a consequence of the negative answer to Hilbert’s 10-th problem, proven by Matiyasevich)
- Fortunately, an inductive proof that \(K_n \) is a bijection is quite easy (see ref. in the paper) \(\Rightarrow \)
- We know we have exactly one solution \(\Rightarrow \)
- Let’s find it!
Cantor’s Pairing Function (when $n = 2$)

- $K_2(x_1, x_2) = x_1 + \frac{(x_1+x_2+1)(x_1+x_2)}{2}$
- $K'_2(x_1, x_2) = x_2 + \frac{(x_1+x_2+1)(x_1+x_2)}{2}$ (symmetric alternative)
- K_2 and K'_2 are the only ones known to be polynomials in x_1, x_2
- the inverse of $K_2(x_1, x_2)$ has simple closed formula - involving an integer square root operation (see paper)
The Inverse of Cantor’s Pairing Function: a Geometric View

Figure: Path connecting pairs associated to successive natural numbers by the inverse of Cantor’s Pairing Function (credit: Wikipedia)
Specifying the Inverse of the Generalized Cantor Bijection

- enumerate naively until the direct function hits the value we are looking for
- a general method, good as a specification, but very slow

% split N in a list of K elements Ns
to_cantor_tuple1(K,N,Ns) :-
 numlist(0,N,Is), % build Is=[0,1,..N]
cartesian_power(K,Is,Ns), % generate candidates
from_cantor_tuple1(Ns,N). % test candidates

% generates lists of K members of input list Is
cartesian_power(0,_,[]).
cartesian_power(K,Is,[X|Xs]) :-
 K>0, K1 is K-1, % this is where we backtrack
 member(X,Is), % this is where we backtrack
cartesian_power(K1,Is,Xs).
the geometric analogy extends from 2D to N-dimensions

from_cantor_tuple(K, Ns, N) runs through successive hyperplanes $X_1 + \ldots + X_k = M$ as we increment M

for each of them the sum maxes out when $X_1 = M$ and $X_J = 0$ for $2 \leq J \leq K$.

we can compute directly (and efficiently) this maximum value with the predicate largest_binomial_sum (see paper)

we use this to derive sum_bounded_cartesian_power
The Algorithm, with Search Restricted to a Hyperplane

- still generate and test, but significantly faster
- search space is narrowed down to the relevant hyperplane

```
to_cantor_tuple2(K,N,Ns) :-
  % find (quickly) the relevant hyperplane associated to M
  find_hyper_plane(K,N,M),
  % generate only tuples located on it
  sum_bounded_cartesian_power(K,M,Xs),
  from_cantor_tuple1(Xs,N), % test candidates
  !, % as we know that the solution is unique
  Ns = Xs.
```

- this is “as good as it gets” – no obvious next step
- should we give up hope to find a deterministic algorithm?
lists and sets of natural numbers (represented canonically) can be morphed into each other using a simple bijection

see PPDP’2009: *An Embedded Declarative Data Transformation Language* for various such morphings – specified as Prolog code

?– list2set([2,0,1,2],Set).
Set = [2, 3, 5, 8].

?– set2list([2, 3, 5, 8],List).
List = [2, 0, 1, 2].
we can transform the direct function by observing that it can be decomposed into:

- a list2set transformation
- a simple tail recursive predicate summing up binomials

from_cantor_tuple(Ns,N) :-
 list2set(Ns,Xs),
 untupling_loop(Xs,0,0,N).

untupling_loop([],_L,B,B).
untupling_loop([X|Xs],L1,B1,Bn) :-
 L2 is L1+1,
 binomial(X,L2,B),
 B2 is B1+B,
 untupling_loop(Xs,L2,B2,Bn).
We (luckily!) bump into Combinatorial Number Systems

- the “Eureka step”: `untupling_loop` implements the sum of the combinations
- this is the representation of \(N \) in the **combinatorial number system of degree \(K \)** (also called “combinadics”)
- efficient conversion algorithms between the conventional and the combinatorial number system are well known

Theorem (Knuth)

The combination \([c_k, \ldots, c_2, c_1]\) is visited after exactly
\[
\binom{c_k}{k} + \ldots + \binom{c_2}{2} + \binom{c_1}{1}
\]
other combinations have been visited.
The Efficient Inverse

- the final code is remarkably simple
- it combines set2list and conversion from combinadics

```prolog
to_cantor_tuple(K, N, Ns) :-
tupling_loop(K, N, Xs),
reverse(Xs, Rs),
set2list(Rs, Ns).

tupling_loop(0, _, [])).
tupling_loop(K, N, [D | Ns]) :- K > 0, NewK is K-1, I is K+N,
between(NewK, I, M), binomial(M, K, B), B > N, !, % no more search is needed
D is M-1, % the previous binomial gives the "digit" D
binomial(D, K, BM), NewN is N-BM,
tupling_loop(NewK, NewN, Ns).
```


Conclusion

- we have derived through iterative refinements a solution to an open problem for which we had no a priori idea if it is solvable.
- Prolog’s support for backtracking and program transformations did most of the magic.
- From a software engineering perspective, this recommends (once more!) logic programming as an ideal problem solving tool.
- An interesting application, in the paper: fair search.
- Other applications:
 - Dynamic n-dimensional arrays.
 - Polynomial Gödel numberings for Term Algebras (see Scala-based open source project) at: http://code.google.com/p/bijective-goedel-numberings/
- Work supported by NSF research grant 1018172.