Modality Definition Synthesis for Epistemic Intuitionistic Logic via a Theorem Prover

Paul Tarau

University of North Texas

EELP’2019
Overview

- we derive a Prolog theorem prover for an Intuitionistic Epistemic Logic by starting from the sequent calculus \textbf{G4IP} that we extend with operator definitions providing an embedding in intuitionistic propositional logic (\textbf{IPC})
- with help of a candidate definition formula generator, we discover epistemic operators for which axioms and theorems of Artemov and Protopopescu’s \textit{Intuitionistic Epistemic Logic} (\textbf{IEL}) hold and formulas expected to be non-theorems fail
- we discuss the failure of the \textit{necessitation rule} for an otherwise successful \textbf{S4} embedding and share our thoughts about the intuitions explaining these differences between epistemic and alethic modalities in the context of the Brouwer-Heyting-Kolmogorov \textbf{BHK} semantics of intuitionistic reasoning and knowledge acquisition
- The paper is written as a literate SWI-Prolog program with its \textbf{extracted code} at \url{https://raw.githubusercontent.com/ptarau/TypesAndProofs/master/ieltp.pro}.
Motivation

- intuitionistic logic formalizes constructive mathematics, and more generally constructive representation and processing of knowledge
- can an intuitively meaningful epistemic logic be embedded in IPC?
- Artemov and Protopopescu’s IEL is designed to capture the spirit of the original BHK semantics of intuitionistic reasoning
- can we design a mechanism to automate the search for a definition that embeds IEL into IPC?
- embedding S4 modal logic in IPC is notoriously hard even if they are both PSPACE-complete (contrary to the embedding of IPC into S4)
- will that also work for embedding S4 into IPC?

⇒ our motivation for this work:
 - answering these questions
 - design a general methodology for answering similar ones
a system for Epistemic Intuitionistic Logic is introduced that
“maintains the original Brouwer-Heyting-Kolmogorov semantics for intuitionism and is consistent with the well-known approach that intuitionistic knowledge be regarded as the result of verification”.

- instead of the classic, alethic-modalities inspired
 \[\text{KA} \rightarrow A \]
- the idea of constructivity of truth is better expressed with
 \[A \rightarrow \text{KA} \]
constructivity of truth applies to both belief and knowledge i.e., that “The verification-based approach allows that justifications more general than proof can be adequate for belief and knowledge”.

“known propositions cannot be false”:

\[K_A \rightarrow \neg
\neg A \]

they position intuitionistic knowledge of A between A and \(\neg
\neg A \):

\[A \rightarrow K_A \rightarrow \neg
\neg A \]

applying double negation to a formula embeds classical propositional calculus into IPC (Glivenko)

\textit{Intuitionistic Truth} \Rightarrow \textit{Intuitionistic Knowledge} \Rightarrow \textit{Classical Truth}.
The axioms of IEL

1. Axioms of propositional intuitionistic logic;
2. $K(A \rightarrow B) \rightarrow (KA \rightarrow KB)$
 \hspace{2cm} (distribution)
3. $A \rightarrow KA$
 \hspace{2cm} (co-reflection)
4. $KA \rightarrow \lnot \lnot A$
 \hspace{2cm} (intuitionistic reflection)

Rule *Modus Ponens*

also, a weaker logic of belief (IEL^-) is expressed by considering only axioms 1,2,3.
Why do we need **IPC** an theorem prover?

- can **IEL** be embedded in **IPC**?
- if YES: no new axioms, just definitions for the **IEL** operators
- can we synthesize such definitions?
- yes, generate candidates by increasing order of size
- work on embedding **S4** in **IPC** suggests the use of auxiliary propositional variables as helpers
- use an **IPC** theorem prover to test that, when unfolded, the definitions result in valid formulas
- use axioms and (optionally) theorems as positive examples
- use non-theorems as negative examples
- “machine-learn” the definitions, in the tradition of Inductive Logic Programming
The **LJT/G4ip** calculus (implicational fragment)

Roy Dyckhoff’s rules for the **G4ip** (originally called the **LJT**)

\[
\begin{align*}
LJT_1 : & \quad \frac{}{A, \Gamma \vdash A} \\
LJT_2 : & \quad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \rightarrow B} \\
LJT_3 : & \quad \frac{B, A, \Gamma \vdash G}{A \rightarrow B, A, \Gamma \vdash G} \\
LJT_4 : & \quad \frac{D \rightarrow B, \Gamma \vdash C \rightarrow D \quad B, \Gamma \vdash G}{(C \rightarrow D) \rightarrow B, \Gamma \vdash G} \\
LJT_5 : & \quad \frac{}{false, \Gamma \vdash G}
\end{align*}
\]

the last rule supports intuitionistic negation
A Lightweight Theorem Prover for Full Intuitionistic Propositional Logic

the LJT/G4ip sequent calculus for the full IPC + rules for “<->”:

```
ljfa(T) :- ljfa(T, []). 

ljfa(A, Vs) :- memberchk(A, Vs), !.
ljfa(_, Vs) :- memberchk(false, Vs), !.
ljfa(A<->B, Vs) :-!, ljfa(B, [A|Vs]), ljfa(A, [B|Vs]).
ljfa(A->B, Vs) :-!, ljfa(B, [A|Vs]).
ljfa(A & B, Vs) :-!, ljfa(A, Vs), ljfa(B, Vs).
ljfa(G, Vs1) :- % atomic or disj or false
    select(Red, Vs1, Vs2),
    ljfa_reduce(Red, G, Vs2, Vs3),
    !,
    ljfa(G, Vs3).
ljfa(A v B, Vs) :- (ljfa(A, Vs); ljfa(B, Vs)), !.
```
ljfa_reduce((A->B),_,Vs1,Vs2):-!, ljfa_imp(A,B,Vs1,Vs2).
ljfa_reduce((A & B),_,Vs,[A,B|Vs]):-!.
ljfa_reduce((A<->B),_,Vs,(A->B),(B->A)|Vs)):--!.
ljfa_reduce((A v B),G,Vs,[B|Vs]):-ljfa(G,[A|Vs]).

ljfa_imp((C->D),B,Vs,[B|Vs]):-!, ljfa((C->D),[(D->B)|Vs]).
ljfa_imp((C & D),B,Vs,[(C->(D->B))|Vs]):-!.
ljfa_imp((C v D),B,Vs,[(C->B),(D->B)|Vs]):-!.
ljfa_imp((C<->D),B,Vs,[(C->D)->(D->C)->B)|Vs]):-!.
ljfa_imp(A,B,Vs,[B|Vs]):-memberchk(A,Vs).

While tableau-based provers (e.g., fCube) are better at handling hard human-made tests, our prover is sound, complete and safe from stack and heap overflows. Also, faster than everything else for small formulas.
The definition formula generator: operator trees

- We generate all formulas of a given size by decreasing the available size parameter at each step when nodes are added to a tree representation of a formula.
- Prolog's DCG mechanism is used to collect the leaves of the tree after the operator definitions:

  ```prolog
  :- op( 500, fy, #). % known, interpreted as "necessary" in S4
  :- op( 500, fy, *). % knowable, interpreted as "possible" in S4
  ```
- We specify our generator as covering the usual binary operators.
- We constrain it to have at least one of the leaves of its generated trees to be a variable.
- We add the `false` constant used in the definition of negation.
- We introduce a new constant symbol “?” assumed not to occur in the language.
- We constrain candidate definitions to ensure that axioms and selected theorems hold and selected non-theorems fail.
- Code in the paper.
prove_with_def(Def,T0) :-
 expand_defs(Def,T0,T1),
 prove_in_ipc(T1, []).

- the definition synthesizer filters the candidate definitions such that the prover `prove_with_def` succeeds on all theorems and fails on all non-theorems

 def_synth(M, Th, NTh, D) :-
 genDef(M, D),
 forall(call(Th, T), prove_with_def(D, T)),
 forall(call(NTh, NT), \+ prove_with_def(D, NT)).

- theorems and non-theorems are provided as names of the facts of arity 1 containing them as in:

 def_synth(M, Def) :- def_synth(M, iel_th, iel_nth, Def).
Candidate definitions up to size 2

?- forall(genDef(2,Def),println(Def)).

#A :- A
#A :- A -> A
#A :- A -> false
#A :- A -> ?
#A :- false -> A
#A :- ? -> A
#A :- A & A
#A :- A & false
#A :- A & ?

...

#A :- (A -> ?) -> A

...

#A :- (? v A) v ?
#A :- (? v false) v A
#A :- (? v ?) v A
Discovering the embedding of IEL in IPC

- we specify a given logic (e.g., IEL or S4) by stating theorems on which the prover extended with the synthetic definition should succeed and non-theorems on which it should fail
- we start with the axioms of Artemov and Protopopescu’s IEL system:

 \[
 \text{iel_th}(a \rightarrow \# a).
 \]

 \[
 \text{iel_th}((\# (a \rightarrow b) \rightarrow (\# a \rightarrow \# b)).
 \]

 \[
 \text{iel_th}(\# a \rightarrow \sim \sim a).
 \]
Finding the definitions that pass the tests

- we generate formulas up to a given size,

```
iel_discover:-
    backtrack_over((def_synth(2,iel_th,iel_nth,D),println(D))).

backtrack_over(Goal):-call(Goal),fail;true.

println(T):-numbervars(T,0,_),writeln(T).
```
Some theorems

- the axioms would be enough to specify the logic
- we also add some theorems when intuitively relevant and/or mentioned in the IEL paper

```
iel_th(# (a & b) <-> (# a & # b)).
iel_th(~ # false).
iel_th(~ (# a & ~ a)).
iel_th(~a -> ~ # a).
iel_th( ~ ~ (# a -> a)).
iel_th(# a & # (a->b) -> # b).
iel_th(* (a & b) <-> (* a & * b)).
iel_th(# a -> * a).
iel_th(# a v # b -> # (a v b)).
iel_th(# p <-> # # p).
iel_th(* a <-> * * a).
iel_th(a -> *a).
```
Some non-theorems

- following the IEL paper, we add our non-theorems

\[
\begin{align*}
\text{iel_nth}(\# \ a \rightarrow \ a). \\
\text{iel_nth}(\# (a \lor b) \rightarrow \# a \lor \# b). \\
\text{iel_nth}(\# a). \\
\text{iel_nth}(\neg (\# a)). \\
\text{iel_nth}(\# \text{false}). \\
\text{iel_nth}(\# a). \\
\text{iel_nth}(\neg (\# a)). \\
\text{iel_nth}(\ast \text{false}).
\end{align*}
\]
Adding the necessitation rule

- we also define (implicit) facts for supporting the *necessitation rule* that states that the operator “#” applied to proven theorems or axioms generates new theorems.

\[
\text{iel_nec_th}(T) :- \text{iel_th}(T).
\]
\[
\text{iel_nec_th}(#) T :- \text{iel_th}(T).
\]

- we obtain the discovery algorithm for **IEL** formula definitions and for **IEL** extended with the necessitation rule.

\[
\text{iel_nec_discover} :-
\text{backtrack_over}((\text{def_synth}(2,\text{iel_nec_th},\text{iel_nth},D),\text{println}(D))).
\]
Definition discovery for IEL

- definition discovery without the necessitation rule

?- iel_discover.
#A:-(A->false)->A
#A:-(A->false)->false
#A:-(A-> ?)->A
true.

- definition discovery with the necessitation rule

?- iel_nec_discover.
#A:-(A->false)->A
#A:-(A->false)->false
#A:-(A-> ?)->A
true.

- unsurprisingly, the results are the same, as a consequence of

\[A \rightarrow \#A \]
Eliminating Dosen’s double negation modality

- Dosen interprets double negation in IPC as a “□” modality
- this corresponds to one of the synthetic definitions
 \[\#A \Leftarrow (A \rightarrow \text{false}) \rightarrow \text{false} \] that is equivalent in IPC to
 \[\#A \Leftarrow \sim\sim A \]
- it is argued in the IEL paper that it does not make sense as an epistemic modality because it would entail that all classical theorems are known intuitionistically
- we eliminate it by requiring the collapsing of “⋆” into “♯” to be a non-theorem:
 \[\text{iel_nth}(\star \ a \iff \# \ a). \]
 \[\text{while known} (\#) \text{ implies knowable} (\sim\#\sim = \star), \text{ as in most modal logics, the inverse implication should not hold} \]
- we obtain:
 \[\neg \text{iel_nec_discover}. \]
 \[\#A :\neg (A \rightarrow \neg) \rightarrow A \]
 true.
Knowledge as awareness?

- thus, our final definition is: \(\#A \vdash (A \rightarrow \) ? \) \(\rightarrow A \), giving:
 \[p \rightarrow \#p \rightarrow \ast p \rightarrow \sim \sim p \]

- what would be an intuitive meaning for the “?" constant in the definition?

- Fagin and Halpern 1985: *knowledge as awareness about truth*

- we interpret“?” as awareness of an agent entailed by (a proof of) A

- we obtain an embedding of IEL in IPC via the extension

\[
KA \equiv (A \rightarrow \text{eureka}) \rightarrow A
\]

where *eureka* is a new symbol not occurring in the language

- not totally accidentally named *eureka*, given the way Archimedes expressed his sudden *awareness* about the volume of water displaced by his immersed body :-(

Paul Tarau (University of North Texas) Modality Synthesis for Epistemic Logic EELP’2019 21 / 30
Knowledge as awareness, continued

- in line with (BHK) interpretation of intuitionistic proof, we may say that an agent *knows* A *iff* A *is validated by a proof of* A *that induces awareness of the agent about it.*
- knowledge of an agent, in this sense, collects facts that are proven constructively in a way that is “understood” by the agent.
- the consequence

$$KA \rightarrow \neg\neg A$$

would then simply say that intuitionistic truths, that the agent is aware of, are also classically valid.
- finally, we define our prover for IEL as follows:

```prolog
iel_prove(P) :- prove_with_def((#A :- (A -> eureka) -> A),P).
```

Paul Tarau (University of North Texas) Modality Synthesis for Epistemic Logic EELP’2019 22 / 30
On eureka

- if one allows `eureka` to occur in the formulas of the language given as input to the prover, then it becomes (the unique) value for which we have equivalence between being known and having a proof

```
?- iel_prove(#eureka <-> eureka).
true.
```

- similarly, it would also follow that

```
iel_prove(*eureka <-> ~ ~ eureka).
```

- one would need to forbid accepting it as part of the prover’s language to closely follow the intended semantics of IEL

- or, think about it as: “knowing awareness is awareness”
the **IPC** fragment with two variables, implication and negation has exactly **518** equivalence classes of formulas

one would expect the construction deriving “∗” from “#” to reach a fixpoint

?- iel_prove(#p <-> ~ # (~p)).
false.
iel_prove(*p <-> ~(*(~p))).
true.

thus the fixpoint of the construction is “∗” that we have interpreted as meaning that a proposition is *knowable*

“*something is knowable if and only if its negation is not knowable*”

?- iel_prove(~(*(~p)) -> #p).
false.

by contrast: the equivalence □p ≡ ¬◊¬p holds in classical modal logics
Discovering an embedding of S4 (no the necessitation rule)

- **axioms**

 - `s4_th(# a -> a).
 - `s4_th(# (a->b) -> (# a -> # b)).
 - `s4_th(# a -> # # a).

- **theorems**

 - `s4_th(* * a <-> * a).
 - `s4_th(a -> * a).
 - `s4_th(# a -> * a).
 - `s4_th(# a v # b -> # (a v b)).
 - `s4_th(# (a v b) -> # a v # b).`
Non-theorems and candidate definitions for **S4**

- **some non-theorems**

```
s4_nth(# a).
s4_nth(~ (# a)).
s4_nth(# false).
s4_nth(* false).
s4_nth(* a -> # * a). % we do not want S5!
s4_nth(a -> # a).
s4_nth(* a -> a).
s4_nth(# a <-> ?).
s4_nth(* a <-> ?).
```

- **some candidate definitions**

```
?- s4_discover.
#A :- A & ?
#A :- ? & A
#A :- A & (A-> ?)
#A :- A & (? -> false)
...
```
Failing on the necessitation rule

- like in the case of IEL we define implicit facts stating that the necessitation rule holds

\[
\begin{align*}
 \text{S4-nec-th}(T) & : -\text{S4-th}(T). \\
 \text{S4-nec-th}(\# T) & : -\text{S4-th}(T).
\end{align*}
\]

- the search procedure:

\[
\begin{align*}
 \text{S4-nec-discover} & : - \\
 \text{backtrack_over} & (\text{def synth}(2, \text{S4-nec-th}, \text{S4-nth}, D), \text{println}(D)).
\end{align*}
\]

- the necessitation rule eliminates all simple embeddings of S4 into IPC

?- S4-nec-discover.
true.
Related work

- Program synthesis techniques have been around in logic programming with the advent of Inductive Logic Programming but the idea of learning Prolog programs from positive and negative examples goes back to E. Shapiro, in 1981.

- Our definition synthesizer fits in this paradigm, with focus on the use of a theorem prover of a decidable logic (IPC) filtering formulas provided by a definition generator through theorems as positive examples and non-theorems as negative examples.

- The idea to use the new constant “?” in our synthesizer is inspired by proofs that some fragments of IPC reduced to two variables have a (small) finite number of equivalence classes.

- Also, by introduction of new variables, in work on polynomial embeddings of S4 into IPC.
Pearce’s equilibrium logic gives a semantics to ASP by extending the 3-valued intermediate logic of here-and-there HT with Nelson’s constructive strong negation.

Kracht introduces a 5-valued truth-table semantics for equilibrium logic is given, fully describing the two negation operators.

several epistemic extensions of equilibrium logic are proposed, in which $Kp \rightarrow p$

by contrast to “alethic inspired” epistemic logics postulating $Kp \rightarrow p$ we closely follow the $p \rightarrow Kp$ view on which the IEL paper is centered.

a more general question is the choice of the logic supporting the epistemic operators, among logics with finite truth-value models (e.g., classical logic or equilibrium logic) or, at the limit, intuitionistic logic itself, with no such models.
Conclusions

- we have devised a general mechanism for synthesizing definitions that extend a given logic system endowed with a theorem prover.
- the set of theorems on which the extended prover should succeed and the set of non-theorems on which it should fail, can be seen as a declarative specification of the extended system.
- success of the approach on embedding the IEL system in IPC and failure on trying to embed S4 has revealed the individual role of the axioms, theorems and rules that specify a given logic system.
- given its generality, our definition generation technique can be applied also to epistemic or modal logic axiom systems to find out if they have interesting embeddings in equilibrium logic and superintuitionistic logics for which high quality solvers or theorem provers exist.