Training Neural Networks to Do Logic, with Logic

Paul Tarau
University of North Texas

November 15, 2020

LPOP’2020
Overview

- **THE PROBLEM:**
 - can we train neural networks to work as close-to-perfect theorem provers on an interesting logic?

- **OUR SOLUTION:**
 - we focus on a simple enough, but interesting logic: Implicational Propositional Intuitionistic Linear Logic (**IPILL** from now on)
 - we need to derive an efficient algorithm requiring a low polynomial effort per generated theorem and its proof term
 - \(\Rightarrow\) we rely on the Curry-Howard isomorphism \(\Rightarrow\) we can focus on generating simply typed linear lambda terms in normal form

- **THE OUTCOMES:**
 - an implicational intuitionistic logic prover specialized to **IPILL** formulas
 - a dataset for training neural networks
 - very high success rate with **seq2seq LSTM** neural networks

- an open problem: can these techniques extend to harder, syntactically and semantically richer logics?
The Implicational Fragment of Propositional Intuitionistic Linear Logic (IPILL)

- while propositional intuitionistic linear logic is already Turing complete, its *implicational fragment* is decidable
- ⇒ we design (polynomial) algorithms for generating its theorems and their proofs
- dual uses of theorems and their proofs
 - as *test sets*, combining tautologies and their proof terms helps with testing correctness and scalability of linear logic theorem provers
 - as *datasets*, they can be used for training deep learning networks focusing on *neuro-symbolic* computations
Formulas depicted as trees, together with their proof terms

formula: \(\lambda X.\lambda Y.(Y\ X) \)

\[
\begin{array}{c}
- \circ \quad \lambda X.\lambda Y.(Y\ X) \quad I \\
\end{array}
\]

\[
\begin{array}{c}
0 \quad - \circ \\
\end{array}
\]

\[
\begin{array}{c}
- \circ \quad 1 \\
\end{array}
\]

\[
\begin{array}{c}
0 \quad 1 \\
\end{array}
\]

\[
\begin{array}{c}
X \quad I \\
\end{array}
\]

\[
\begin{array}{c}
Y \quad a \\
\end{array}
\]

\[
\begin{array}{c}
Y \quad X \\
\end{array}
\]

formula: \(\lambda X.X \)

\[
\begin{array}{c}
- \circ \quad \lambda X.X \quad I \\
\end{array}
\]

\[
\begin{array}{c}
- \circ \quad - \circ \\
\end{array}
\]

\[
\begin{array}{c}
- \circ \quad - \circ \\
\end{array}
\]

\[
\begin{array}{c}
0 \quad 0 \quad 0 \quad 0 \\
\end{array}
\]

\[
\begin{array}{c}
X \quad X \\
\end{array}
\]
The Curry Howard Isomorphism

- a correspondence between *computations* and *proofs* : the *Curry-Howard isomorphism*

- in its simplest form, it connects the *implicational fragment of propositional intuitionistic logic* \(\text{IIPC} \) with types in the *simply typed lambda calculus*

- a low polynomial type inference algorithm associates a type (when it exists) to a lambda term

- harder, (PSPACE-complete) algorithms associate *inhabitants* to a given type expression with the resulting lambda term (typically in normal form) serving as a witness for the existence of a proof for the corresponding tautology in implicational propositional intuitionistic logic

- \(\Rightarrow \) can we use combinatorial generation of lambda terms + type inference (easy) to “solve” some type inhabitation problems (hard)?
Deriving the formula generators (see ICLP’20 paper)

1. **IPILL** formulas (fairly simple Prolog code), built as:
 - binary trees of size N, counted by Catalan numbers $Catalan(N)$
 - labeled with variables derived from set partitions counted by $Bell(N+1)$ (see A289679 in OEIS)

2. linear lambda terms (proof terms for the **IPILL** formulas)
 - linear skeleton Motzkin trees (binary-unary trees with constraints enforcing one-to-one mapping from variables to their lambda binders)

3. *closed* linear lambda terms

4. closed linear lambda terms in normal form

5. after a chain of refinements, we derive a compact and efficient generator for *pairs of Linear Lambda Terms in Normal Form* and their types (which always exist as they are all typable!) see next slide!

6. it generates in a few hours **7,566,084,686** terms together with their corresponding types, seen as theorems in **IPILL** via the Curry-Howard isomorphism (A062980 sequence in OEIS)
linear_typed_normal_form(N,E,T) :- succ(N,N1),
 linear_typed_normal_form(E,T,N,0,N1,0,[]).

linear_typed_normal_form(l(X,E),(S,'-o' T),A1,A2,L1,L3,Vs) :-
 pred(L1,L2), % defined as L1>0, L2 is L1-1
 linear_typed_normal_form(E,T,A1,A2,L2,L3,[V:S|Vs]),
 check_binding(V,X).
linear_typed_normal_form(E,T,A1,A2,L1,L3,Vs) :-
 linear_neutral_term(E,T,A1,A2,L1,L3,Vs).

linear_neutral_term(X,T,A,A,L,L,Vs) :-
 member(V:TT,Vs), bind_once(V,X), T=TT.
linear_neutral_term(a(E,F),T,A1,A4,L1,L3,Vs) :- pred(A1,A2),
 linear_neutral_term(E,(S,'-o' T),A2,A3,L1,L2,Vs),
 linear_typed_normal_form(F,S,A3,A4,L2,L3,Vs).

bind_once(V,X) :- var(V), V=v(X).
check_binding(V,X) :- nonvar(V), V=v(X).
A Normal Form and its Corresponding Linear Type (l).

term: \(\lambda X. \lambda Y. (Y \; X) \)
its linear type:

\[\begin{array}{c}
X & \downarrow & I \\
Y & \downarrow & a \\
 & \downarrow & Y \; X
\end{array} \]

Note that all linear lambda terms are typable!
A Normal Form and its Corresponding Linear Type (II).

\[\lambda X.(((X \lambda Y.Y) \lambda Z.Z) \lambda U.U) \]

Note the symmetries between linear terms and their types!
An Eureka Moment

- it looks like we see some interesting symmetries in the pictures!
 - there are exactly two occurrences of each variable both in the theorems and their proof terms of which they are the principal types
 - theorems and their proof terms have the same size, counted as number of internal nodes

- thus, we can solve the problem of generating all IPILL tautologies size \(N \)

IF

the predicate `linear.Typed.Normal.form` implements a generator of their proof-terms of size \(N \)
The Good News: there's a size-preserving bijection between linear lambda terms in normal form and their principal types!

A proof follows immediately from a paper by Noam Zeilberger who attributes this observation to Grigori Mints.

We have obtained a generator for all theorems of implicational linear intuitionistic propositional logic of a given size, as measured by the number of lollipops, without having to prove theorems!

This is a “Goldilocks” situation that points out the very special case that implicational formulas have in linear logic and equivalently, linear types have in type theory!
The Datasets

- the dataset containing generated theorems and their proof-terms in prefix form (as well as their LaTeX tree representations marked as Prolog “%” comments) is available at http://www.cse.unt.edu/~tarau/datasets/lltaut/
- it can be used for correctness, performance and scalability testing of linear logic theorem provers
- the \texttt{<formula, proof-term>} pairs in the dataset are usable to test deep-learning systems on theorem proving tasks
- also, formulas with non-theorems added for IPILL
Examples of Data records

prefix encoding: lollipop=0, application=0, lambda=1, variables as uppercase letters, “:” as separator between formulas and proof terms

- Provable formulas with their proof terms (for IPILL)

 0AA:1AA
 0A00ABB:1A1B0BA
 00AB0AB:1A1B0AB
 0A00AB00BCC:1A1B1C0C0BA
 00000AAB00C0BD0CD00EEFF:1A00A1B1C1D00CD0B1EE1FF

- Provable formulas with their proof terms and “?” if proof failed

 0A0B0000A0C0B0DE0C0DEFF:1A1B1C0C1D1E1F0000DAEBF
 0A0B0000A0C0B0DE0C0DFGH:?
 0A0B0000A0B0C0DE0D0CEFF:1A1B1C0C1D1E1F0000DABFE
 0A0B0000A0B0C0DE0D0CFGG:?

- similar formulas for IPC, also on normal forms in prefix form
How can Neural Networks help with Theorem Proving?

- more generally, we search for good frameworks for neuro-symbolic computing
- theorem provers are computation-intensive search algorithms
- Turing-complete (e.g., PLL, FOL), PSPACE-complete (e.g., IPC)
- there are two ways neural networks can help:
 - fine-tuning the search, by helping with the right choice at choice points
 - used via an interface to solve low-level “perception”-intensive tasks
 (e.g., working on learnable ground facts labeled with probabilities – DeepProbLog).
- is there a third way: can they simply replace the symbolic theorem prover given a large enough training dataset?
the key ML concepts to watch for:
 - “honesty”: split the dataset into: training, validation and (independent) test sets
 - things to avoid:
 - overfitting (works on training, fails on validation and testing data)
 - unlikely to work well on random (high Kolmogorov complexity) data

the key NN general concepts to watch for:
 - NNs are *trainable universal approximators* for a given function
 - \(L_{t+1} = \sigma(A \ast L_t + b) \) where \(L_t \) is a layer at step \(t \), \(A \) is a matrix containing trainable parameters, \(b \) is a bias vector and \(\sigma \) is a non-linear function (logistic sigmoid, tanh, \(\text{RELU}(x) = \max(0, x) \), etc.)
 - differentiable functions, gradients computed on backpropagation
 - an intuition behind why deep NNs are needed: each layer abstracts away statistically relevant patterns that are fed to the next layer
 - often, to ensure generalization, information is deliberately lost
Training the Neural Networks as Theorem Provers via the Curry-Howard Isomorphism

- formulas/types and proofs/lambda terms are both trees
- \Rightarrow we can represent them as prefix strings
- \Rightarrow for IPILL we can even find a size definition to give the same size on both sides:
 - for lambda terms: leaves=0, lambda nodes=1, applications=1
 - for $\neg\circ$ formulas: leaves=0, lollipops = 1
- what type of neural networks to use?
 - with trees as prefix string: \Rightarrow “seq2seq” recurrent NNs
 - LSTM (long short term memory) NNs: good to handle long distance dependencies in the prefix forms
seq2seq Neural Networks

- sequence as input, train to guess sequence as output
- used originally for translation of natural languages, with training on large parallel corpora
- notable variants: transformers, trained to predict masked words in a sentence as well as predict next sentence in a text
- *unsupervised* - just feeding them very large text data
- examples: BERT, GPT-3 - impressive performance on several NLP tasks (e.g., GPT-3 generating fake news)
- newer variants, possibly more in interesting: tree2tree, dag2dag and several types of graph neural networks (e.g., convolutional, attention, spectral, torch geometric)
LSTM seq2seq Neural Networks

- recurrent neural networks keep track of dependencies within sequences
- feedback from values at time t is fed into computations at time $t + 1$
- long short-term memory (LSTM) is a recurrent neural network (RNN) architecture
- it can not only process single data points (such as images), but also entire sequences of data (such as text, speech or video)
- LSTM NNs have feedback connections \Rightarrow LSTM avoids vanishing or exploding gradient problems by also feeding *unchanged* values to the next layer
Evaluating the Performance of our Neural Networks as Theorem Provers

- in fact, our seq2seq LSTM recurrent neural network trained on encodings of theorems and their proof-terms performs unusually well
- the experiments with training the neural networks using the IPIll and IIPC theorem dataset are available at: https://github.com/ptarau/neuralgs
- the \(< \text{formula}, \text{proof term} > \) generators are available at: https://github.com/ptarau/TypesAndProofs
- the generated datasets are available at: http://www.cse.unt.edu/~tarau/datasets/
Accuracy of the LSTM seq2seq neural network on our formula/proof term dataset for IPILL

Figure: Accuracy curve for 100 epochs
Loss curve of the LSTM seq2seq neural network on our formula/proof term dataset for IPILL

Figure: Loss curve for 100 epochs
Accuracy for **IPILL** + unprovable formulas

Figure: Accuracy curve for 100 epochs
Loss for **IPILL** + unprovable formulas

Figure: Loss curve for 100 epochs
A harder Logic: Implicational Intuitionist Propositional Logic

Can we train Neural Network as Provers for a PSPACE-complete Logic?
Figure: Accuracy curve for 100 epochs
Figure: Loss curve for 100 epochs
Conclusions

- we have used a Logic Programming Language (Prolog) to derive a generator for all IPILL and IIPC theorems of a given size, without needing a theorem prover by combining a generator for their proof terms and a type inference algorithm.

- we have sketched their use as a dataset for training neural networks, turning them into reliable theorem provers, for the harder inverse problem: given a formula in IPILL, or IIPC, find a proof term for it!

- open problems, future work:
 - can this be extended to full fragments of IPC or LL?
 - would the same success rate apply to large, random generated formulas?
 - how would the NNs perform on larger, human-made formulas?