Deriving Theorems in Implicational Linear Logic, Declaratively

Paul Tarau
Dept. of Computer Science and Engineering
University of North Texas
1155 Union Circle, Denton, Texas 76203, USA
paul.tarau@unt.edu

Valeria de Paiva
Topos Institute, CA, USA
valeria.depaiva@gmail.com

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The problem we want to solve is how to generate all theorems of a given size in the implicational fragment of propositional intuitionistic linear logic. We start by filtering for linearity the proof terms associated by our Prolog-based theorem prover for Implicational Intuitionistic Logic. This works, but using for each formula a PSPACE-complete algorithm limits it to very small formulas. We take a few walks back and forth over the bridge between proof terms and theorems, provided by the Curry-Howard isomorphism, and derive step-by-step an efficient algorithm requiring a low polynomial effort per generated theorem. The resulting Prolog program runs in $O(N)$ space for terms of size N and generates in a few hours 7,566,084,686 theorems in the implicational fragment of Linear Intuitionistic Logic together with their proof terms in normal form. As applications, we generate datasets for correctness and scalability testing of linear logic theorem provers and training data for neural networks working on theorem proving challenges. The results in the paper, organized as a literate Prolog program, are fully replicable.

Keywords: combinatorial generation of provable formulas of a given size, intuitionistic and linear logic theorem provers, theorems of the implicational fragment of propositional linear intuitionistic logic, Curry-Howard isomorphism, efficient generation of linear lambda terms in normal form, Prolog programs for lambda term generation and theorem proving.

1 Introduction

Linear Logic (Girard 1987) as a resource-control mechanism constrains the use of formulas available as premises in a proof. In its full generality, a larger number of operators ensures on-demand (re)use of these resources, in a controlled way (e.g., with exponentials like ‘!”). While in full propositional form linear logic is already Turing complete, its implicational fragment is decidable and finding low polynomial algorithms for proving its theorems is especially interesting when large datasets of theorems need to be generated. Such datasets, combining tautologies and their proof terms can be useful for testing correctness and scalability of linear logic theorem provers (not necessarily restricted to the implicational fragment) and more importantly, for training deep learning networks focusing on neuro-symbolic computations, e.g., (Dong et al. 2019, Manhaeve et al. 2018, Rocktäschel and Riedel 2017), an emerging research trend, motivated in part by the need for explainable AI in medical, legal or other industrial AI applications.
Of particular interest in the correspondence between computations and proofs is the Curry-Howard isomorphism (Howard 1980; Wadler 2015). In its simplest form, it connects the implicational fragment of propositional intuitionistic logic with types in the simply typed lambda calculus. A low polynomial type inference algorithm associates a type (when it exists) to a lambda term. Harder (PSPACE-complete, see Statman 1979) algorithms associate inhabitants to a given type expression with the resulting lambda term (typically in normal form) serving as a witness for the existence of a proof for the corresponding tautology in implicational propositional intuitionistic logic. In particular, when restricting linear logic to its implicational fragment (syntactically, just binary trees with the “lollipop” operator “−o” and variables as leaves), it becomes interesting to find out how formulas relate to proof terms, seen as linear lambda terms (constrained to have exactly one variable associated to each lambda binder). Also, this is important because such formulas correspond to linear types, which can significantly optimize memory management by allowing reuse of single-threaded data structures as it has been implemented in Linear Haskell (Bernardy et al. 2018).

This singles out the usefulness of efficiently generating a dataset of linear types/linear logic tautologies, the focus of this paper, with at least three applications in mind:

- correctness and scalability tests for linear logic theorem provers, complementing the ones described in Olarte et al. 2018
- a formula/proof term dataset for training neuro-symbolic systems with a likely to be learnable, PTIME-decidable set of problems
- a correctness and scalability test for systems implementing linear types (e.g., Linear Haskell)

We will proceed incrementally, with a step-by-step derivation process, starting with adapting an intuitionistic theorem prover to work as a prover for the implicational fragment of linear intuitionistic logic. From this solution, seen as an executable specification (correct but slow) we derive, after crossing the Curry-Howard “bridge”, progressively more constrained lambda term generators, ending with one that not only generates efficiently closed linear lambda terms in normal form but it also infers their types, corresponding to theorems in the language of implicational linear intuitionistic logic. Moreover, we engineer the generation mechanism such that the lambda terms and their principal types have exactly the same size. Thus, without help of a theorem prover, we will uniformly generate all linear implicational tautologies of a given size. As a result, our Prolog code defines constructively a size-preserving bijection between these two sets, on the opposite side of the Curry-Howard bridge. As a final step, we re-engineer this bijection to work in reverse mode, as a theorem prover, that given an implicational formula, returns its proof term, if it exists.

The rest of the paper is organized as follows. Section 2 introduces formula generators for (linear) implicational formulas of a given size. Section 3 describes the adaptation of an intuitionistic theorem prover to formulas of implicational propositional linear logic. Section 4 moves our effort to the other side of the Curry-Howard isomorphism, resulting in generation of linear lambda terms in normal form that are bijectively connected to their principal types corresponding to theorems in implicational linear logic. Section 5 discusses our results in the wider context of linear logic research. Section 6 overviews related work and section 7 concludes the paper. As the pa-
Deriving Theorems in Implicational Linear Logic, Declaratively

per is actually a literate Prolog program, its code is also made available as a separate file[2] in compliance with our commitment to fully replicable research results.

2 The Formula Generators

We will first develop formula generators to cover all implicational formulas of a given size, measured as the number of internal nodes. With the “lollipop” operator “–o” labeling internal nodes and natural numbers starting with 0 as variables labeling the leaves, one such formula tree to be generated for N=4, is the following:

2.1 Generating Formula Trees

First, we generate all binary trees of size N with internal implication nodes “–o/2”, while collecting their N+1 distinct logic variable leaves to a list.

We define “–o” as an operator and we use pred/2 to consume one unit of size on each internal node.

```
:-op(900,xfy,( '-o' )).
gen_tree(N,Tree,Leaves):-gen_tree(Tree,N,0,Leaves,[]).
gen_tree(V,N,N,Vs,Vs).
gen_tree((A '-o' B),SN1,N3,Vs1,Vs3):-pred(SN1,N1),
  gen_tree(A,N1,N2,Vs1,Vs2),
gen_tree(B,N2,N3,Vs2,Vs3).
pred(SN,N):-succ(N,SN).
```

The counts of generated trees match entry A000108 in (Sloane 2020), representing the Catalan numbers (Stanley 1986), binary trees with N internal nodes.

2.2 Generating the variable labels

The next step toward generating the set of all type formulas is observing that logic variables define equivalence classes that correspond to partitions of the set of variables, simply by selectively unifying them.

The predicate `mpart_of/2` takes a list of distinct logic variables and generates partitions-as-equivalence-relations by unifying them “nondeterministically”. It also collects the unique variables defining the equivalence classes, as a list given by its second argument.

```
mpart_of([],[]).
mpart_of([U|Xs],[U|Us]):-mcomplement_of(U,Xs,Rs),mpart_of(Rs,Us).
```

To implement a set-partition generator, we split a set repeatedly in subset+complement pairs with help from the predicate `mcomplement_of/2`.

```
mcomplement_of(_,[],[]).
mcomplement_of(U,[X|Xs],NewZs):-
mcomplement_of(U,Xs,Zs),
mplace_element(U,X,Zs,NewZs).
mplace_element(U,U,Zs,Zs).
mplace_element(_,X,Zs,[X|Zs]).
```

To generate all set partitions from a list of distinct variables of a given size, we build a list of fresh variables with Prolog’s built-in predicate `length/2` and constrain `mpart_of/2` to use them as the set to be partitioned.

```
partitions(N,Ps):-length(Ps,N),mpart_of(Ps,_).
```

The counts of the resulting set-partitions (Bell numbers) 1, 1, 2, 5, 15, 52, 203,... correspond to the entry A000110 in (Sloane 2020).

Example 1
Set partitions of size 3 expressed as variable equalities.

```
?- partitions(3,P).
```

We next bind leaf variables of formula trees to our set partitions and encode distinct variables as consecutive natural numbers starting at 0.

```
natpartitions(Vs):-mpart_of(Vs,Ns),
    length(Ns,SL),succ(L,SL),numlist(0,L,Ns).
gen_formula(N,T):-gen_tree(N,T,Vs), natpartitions(Vs).
```

This sequence corresponds to entry A289679 in (Sloane 2020), with the first terms being 1, 1, 2, 10, 75, 728, 8526, 115764, 1776060, computed as $a(N) = \text{Catalan}(N) \times \text{Bell}(N+1)$.

Example 2
Some formulas of size 2.

```
?- gen_formula(2,T).
T = (0 \cdot 0 \cdot 0); T = (0 \cdot 1 \cdot 0); 
... T = ((0 \cdot 1) \cdot 0); T = ((0 \cdot 1)\cdot 0 2).
```

3 Adapting a Prover for Implicational Linear Logic

We will derive a prover for the implicational fragment of Propositional Intuitionistic Linear Logic by adding linearity constraints to the intuitionistic prover described in (Tarau 2019), (also in Appendix A).
3.1 Ensuring the Proof Terms are Linear

We will constrain intuitionistic proofs to produce linear lambda terms as proof terms.

\[
\text{is_linear}(X) :- \neg \neg \text{is_linear1}(X).
\]

\[
\text{is_linear1}(V) :- \text{var}(V),!,V='\$bound'.
\]

\[
\text{is_linear1}(\text{l}(X,E)) :- \text{is_linear1}(E),\text{nonvar}(X).
\]

\[
\text{is_linear1}(\text{a}(A,B)) :- \text{is_linear1}(A),\text{is_linear1}(B).
\]

The predicate \text{is_linear1/1} tests that each lambda binder corresponds to exactly one variable. Double negation is used to undo marking each variable with the atom “$bound”.

A linear logic prover is now derived from the intuitionistic prover \text{prove_ipc} by filtering proof terms with \text{is_linear}. The predicate \text{gen_taut} combines the implicational formula generator with the linear prover to obtain implicational linear logic tautologies of size \(N\).

\[
\text{prove_lin}(T,\text{ProofTerm}) :- \text{prove_ipc}(T,\text{ProofTerm}),\text{is_linear}(\text{ProofTerm}).
\]

\[
\text{gen_taut}(N,T,\text{ProofTerm}) :- \text{gen_formula}(N,T),\text{prove_lin}(T,\text{ProofTerm}).
\]

Example 3

Formulas of size 3 depicted as trees, together with their proof terms

\[
\text{formula: } - o \quad \lambda X.\lambda Y.(Y \ X) \quad \text{l} \quad \text{formula: } - o \quad \lambda X.X \quad \text{l}
\]

\[
0 \quad - o \quad \lambda X.\lambda Y.(Y \ X) \quad 1 \quad - o \quad \lambda X.X \quad 1
\]

\[
- o \quad 1 \quad X \quad \text{l} \quad - o \quad - o \quad X \quad X
\]

\[
- o \quad 1 \quad X \quad Y \quad \text{l} \quad 0 \quad 0 \quad 0 \quad 0
\]

\[
A \quad Y \quad X
\]

This is working but it is too slow, it takes 2203 seconds to generate the counts 0, 1, 0, 4, 0, 27, 0, 315, 0, 5565. That’s expected, not only because intuitionistic propositional logic proofs are PSPACE-complete even for the implicational fragment, but also because we are filtering through the super-exponential number of formulas counted by \text{A289679} in (Sloane 2020).

Besides performance issues, we are facing here three hurdles:

- proof terms are not necessarily in normal form
- multiple proof terms can result in the same provable formula
- sizes of formulas do not correlate in a simple way to the sizes of their proof terms

On the other hand, we know that type inference on lambda terms resulting in provable formulas can make the process much faster. This brings us to our next step.

4 Crossing the Curry-Howard Bridge: from Lambda Terms to Provable Formulas

It’s time to look into the linear lambda terms corresponding to the formulas we want to generate.

While generators for linear lambda terms do exist (e.g., (Lescanne 2018; Tarau 2018) we are starting here with a clean design that propagates size constraints by keeping separate counts for lambda nodes and application nodes and then enforces linearity efficiently. This constraint reduces significantly the candidate trees to be decorated with lambda binders and variables as
it is now like working with size N rather than size $2N + 1$ in a super-exponentially growing set, while reducing the possible leaf labelings to much fewer than all possible combinations of variable names. Adding linearity constraints will further reduce the combinatorial explosion by ensuring that each lambda binder connects to a unique leaf variable.

4.1 A Generator for Linear Skeleton Motzkin Trees

First we use the fact that there are as many lambda binders as variables, given the one-to-one mapping required for the (completely) linear lambda calculus. Thus we will give N units to application nodes, corresponding to the $N + 1$ variables in leaf position and $N + 1$ units to lambda nodes, resulting in a total of $N + N + 1 = 2N + 1$ internal nodes. We define size by allocating one unit to each lambda node and one to each application node. This, for a given N, we produce lambda terms of size $2N + 1$. But first we will only generate term skeletons for which this constraint holds, with a dummy leaf node. As these are a special case of Motzkin trees (also called binary-unary trees, see A001006 at (Sloane 2020)), we call them linear Motzkin skeletons. We will obtain linear lambda terms by decorating these trees with lambda binders and leaf variables in their scope.

\[
\text{linear_motzkin}(N,E):-\text{succ}(N,N1),\text{linear_motzkin}(E,N,0,N1,0).
\]

\[
\text{linear_motzkin}(ext{leaf},A,A,L,L).
\]

\[
\text{linear_motzkin}(l(E),A1,A2,L1,L3):-\text{pred}(L1,L2),\text{linear_motzkin}(E,A1,A2,L2,L3).
\]

\[
\text{linear_motzkin}(a(E,F),A1,A4,L1,L3):-\text{pred}(A1,A2),
\]

\[
\text{linear_motzkin}(E,A2,A3,L1,L2),
\]

\[
\text{linear_motzkin}(F,A3,A4,L2,L3).
\]

Interestingly, they correspond to sequence A024489 in (Sloane 2020), giving 1, 6, 70, 1050, 18018, 336336 ..., which has a closed formula and originates from a geometric interpretation similar in terms of constraints on graph nodes, but it is not noted as related to lambda terms or their Motzkin skeletons.

4.2 Decorating the Linear Skeletons

Next we decorate the Motzkin skeletons with lambda nodes and variables, while ensuring that we generate only closed terms. We push the lambda binder to a stack from which each variable will pick a binder having it in its scope. This ensures that we generate closed lambda terms.

The predicate closed_almost_linear_term initializes the counter N for application nodes. They are propagated down to 0 with variables $A1, ..., An$ through the recursive calls. The counter $N1 = N+1$ for lambda binders is propagated with the variables $L1, ..., Ln$. The stack of variables Vs, initially empty, makes available the lambda binders to the leaf variables. The stack grows when a lambda constructor $1/2$ is introduced.

Example 4

Almost linear lambda tree, having the same number of lambda nodes as leaves, but not paired two by two, 3 occurrences of X and one of Y being the exception).
term: \((\lambda X. (\lambda Y X X) \lambda Z. Z) \lambda U. U\)

tree:

```
   a
  /\   /\               I   I
 a  U  Z  Z
  /\    /\   X
 X  Y
```

closed_almost_linear_term(N,E) :- succ(N,N1),
closed_almost_linear_term(E,N,0,N1,0,[[]]).
closed_almost_linear_term(X,A,A,L,L,Vs): = member(X,Vs).
closed_almost_linear_term(l(X,E),A1,A2,L1,L3,Vs): = pred(L1,L2),
closed_almost_linear_term(E,A1,A2,L2,L3,[X|Vs]).
closed_almost_linear_term(a(E,F),A1,A4,L1,L2,Vs): = pred(A1,A2),
closed_almost_linear_term(E,A2,A3,L1,L2,Vs),
closed_almost_linear_term(F,A3,A4,L2,L3,Vs).

Note that linearity constraints are only half-way enforced so far: we only ensure that the number of lambda nodes is equal to the number of variables they bind.

4.3 Generating Closed Linear Lambda Terms

To ensure that terms are linear, we will mark each lambda binder when it reaches a variable. When exiting the expression in the scope of the binder we test that it has been indeed marked. Note, that without this test we would obtain affine lambda terms. The following predicates implement these operations.

bind_once(V,X) :- var(V), V = v(X).
check_binding(V,X) :- nonvar(V), V = v(X).

Otherwise, the predicate linear_lambda_term works like closed_almost_linear_term.

linear_lambda_term(N,E) :- succ(N,N1), linear_lambda_term(E,N,0,N1,0,[[]]).
linear_lambda_term(X,A,A,L,L,Vs) :- member(V,Vs), bind_once(V,X).
linear_lambda_term(l(X,E),A1,A2,L1,L3,Vs) :- pred(L1,L2),
 linear_lambda_term(E,A1,A2,L2,L3,[V|Vs]), check_binding(V,X).
linear_lambda_term(a(E,F),A1,A4,L1,L3,Vs) :- pred(A1,A2),
 linear_lambda_term(E,A2,A3,L1,L2,Vs),
 linear_lambda_term(F,A3,A4,L2,L3,Vs).

This gives us the sequence A062980 in [Sloane 2020](https://oeis.org/A062980), starting as 1, 5, 60, 1105, 27120, 828250 ..., confirming that they match results in [Lescanne 2018](https://dblp.org/rec/journals/corr/Lescanne18a), [Tarau 2018](https://dblp.org/rec/journals/corr/abs-1801-00897).

However, our goal is to generate unique theorems of a given size of linear implicational intuitionistic logic and that’s on the other side of the Curry-Howard bridge. As otherwise the sizes...
of our lambda terms can be smaller or larger than the formulas and more than one term can correspond to the same formula, we will need to restrict ourselves to lambda terms in normal form, i.e., terms not having lambdas on the left side of application nodes that could be simplified using β-reduction.

4.4 Linear Normal Forms

Generation of normal forms relies on neutral terms that ensure that applications have as left nodes only variables or other application nodes. We ensure closedness and linearity constraints the same way as in the linear lambda term generator.

```prolog
linear_normal_form(N,E):-succ(N,N1),linear_normal_form(E,N,0,N1,0,[]).
linear_normal_form(l(X,E),A1,A2,L1,L3,Vs):-pred(L1,L2),
    linear_normal_form(E,A1,A2,L2,L3,[V|Vs]),check_binding(V,X).
linear_normal_form(E,A1,A2,L1,L3,Vs):-
    linear_neutral_term(E,A1,A2,L1,L3,Vs).
linear_neutral_term(X,A,A,L,L,Vs):-member(V,Vs),bind_once(V,X).
linear_neutral_term(a(E,F),A1,A4,L1,L3,Vs):-pred(A1,A2),
    linear_neutral_term(E,(S '−o' T),A2,A3,L2,L3,Vs),
    linear_typed_normal_form(F,S,A3,A4,L2,L3,Vs).
```

Again, this gives us sequence A262301 in [Sloane 2020](#) starting with 1, 3, 26, 367, 7142, 176766, ..., confirming the results in [Lescanne 2018; Tarau 2018](#). Again, generating the lambda terms in normal form is essential as otherwise multiple terms that β-reduce to the normal form would correspond to the same formula.

4.5 Inferring the Types: Walking back Over the Curry-Howard Bridge

Finally, we will also annotate our lambda terms with their inferred types. This is quite easy as all linear terms are typable. Moreover, unlike in [Tarau 2018](#), unification does not require ‘occurs check’ as each lambda binds exactly one variable.

In fact, our type decoration mechanism can be seen as a simplified form of the usual Hindley-Milner type inference (Hindley 1997) used to derive the types of simply typed lambda terms, the main differences being that we do not need to use unification with occurs check and that we work exclusively on closed lambda terms.

```prolog
linear_typed_normal_form(N,E,T):-succ(N,N1),
    linear_typed_normal_form(E,T,N,0,N1,0,[]).
linear_typed_normal_form(l(X,E),(S '−o' T),A1,A2,L1,L3,Vs):-pred(L1,L2),
    linear_typed_normal_form(E,T,A1,A2,L2,L3,[V:S|Vs]),
    check_binding(V,X).
linear_typed_normal_form(E,T,A1,A2,L1,L3,Vs):-
    linear_neutral_term(E,T,A1,A2,L1,L3,Vs).
linear_neutral_term(X,T,A,A,L,L,Vs):-member(V:TT,Vs),bind_once(V,X),T=TT.
linear_neutral_term(a(E,F),T,A4,L1,L3,Vs):-pred(A1,A2),
    linear_neutral_term(E,(S '−o' T),A2,A3,L1,L2,Vs),
    linear_typed_normal_form(F,S,A3,A4,L2,L3,Vs).
```
Deriving Theorems in Implicational Linear Logic, Declaratively

The term counts, as expected, correspond to sequence A262301 in [Sloane 2020], under the title number of normal linear lambda terms of size n with no free variables. Our Prolog program, runs the predicate linear_typed_normal_form/3 in $O(N)$ space for terms of size N and it generates billions of terms and types in a few hours, e.g., 1, 3, 26, 367, 7142, 176766, 5304356, 186954535, 7566084686. Note that in [Lescanne 2018] a method to count linear terms analytically provides counts up to higher values of N for their super-exponentially growing terms, but the corresponding Haskell program runs into memory problems after generating 5304356 terms, even if given 250GB of memory. The ability to go 3 orders of magnitude higher to 7566084686 actually generated terms (and even 4 if given longer time or by parallelizing the generators as in [Bendkowski et al. 2018]), comes from the simple fact that Prolog recovers memory on backtracking. Thus we work in $O(N)$ space for terms and formulas of size N, with no need for a garbage collector invocation.

Example 5

Normal forms and their corresponding linear types.

<table>
<thead>
<tr>
<th>Term</th>
<th>Linear Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda X.\lambda Y. (Y X)$</td>
<td>$\lambda X.\lambda Y. (Y X)$</td>
</tr>
</tbody>
</table>

4.6 The Eureka Moment

After looking at the generated terms and their types we observe the following surprising facts:

- there are exactly two occurrences of each variable both in the theorems and their proof terms
- theorems and their proof terms have the same size, counted as number of internal nodes

https://raw.githubusercontent.com/PierreLescanne/CountingGeneratingAffineLinearClosedLambdaterms/master/LinearNormalFormSize0or1.hs
Thus, we have solved the problem of generating all tautologies size N in the implicational fragment of propositional linear intuitionistic logic if the predicate \textit{linear_typed_normal_form} implements a generator of their proof-terms of size N, for which the tautologies can be seen each as their principal type.

It turns out that there’s a size-preserving bijection between linear lambda terms in normal form and their principal types. A proof of this follows immediately from (Zeilberger 2015) who attributes this observation to (Mints 1992). In (Zeilberger 2015) the bijection is proven by exhibiting a reversible transformation of oriented edges in the tree describing the linear lambda term in normal form, into corresponding oriented edges in the tree describing the linear implicational formula, acting as its principal type.

It follows that we have obtained a generator for all theorems of implicational linear intuitionistic propositional logic of a given size, as measured by the number of lollipops, without having to prove theorems, thus avoiding the need to call Turing-complete provers for linear logic or PSPACE-complete provers for propositional intuitionistic logic, simply by taking advantage of the existence of a size-preserving bijection between theorems and their corresponding proof terms and the Curry-Howard correspondence.

Clearly, this is a “Goldilocks” situation, that, in a way, points out the very special case that implicational formulas have in linear logic and equivalently, linear types have in type theory. We plan future work on extending this result to the case of propositional affine linear logic, also known to be decidable (Kopylov 1995).

4.7 The Final Prover: Type Inference, Reversed

One more thing is to be noted at this point. While we can generate efficiently all tautologies of implicational linear logic by using a size-preserving bijection from linear lambda terms in normal form, a few adjustments are needed to turn \textit{linear_typed_normal_form}/2 into \textit{a theorem prover}; that given an arbitrary implicational formula, returns the proof term in normal form corresponding to it, if any.

In the proof in (Mints 1992), also nicely explained in (Zeilberger 2015), the formula playing the role of the principal type of a lambda term is \textit{balanced}, i.e., each variable in the formula must occur once positively and once negatively, with \textit{polarity} defined recursively as switching into its opposite on the left side \(A\) of the formula \(A \rightarrow B\) and being inherited downward on its right side. The predicate \textit{is_polarized_tree}/2 checks these conditions, while also returning the number \(N\) of distinct variables of each polarity.

```prolog
is_polarized_tree(0,Tree,Ps,Qs):-
    is_polarized_tree(0,Tree,Ps,[],Qs,[]),
    in_bijection(Ps,Qs,N).

is_polarized_tree(P,V,Xs1,Xs2,Ys1,Ys2):-atomic(V),!,
    dispatch(P,V,Xs1,Xs2,Ys1,Ys2).

is_polarized_tree(P,(A \rightarrow B),Xs1,Xs3,Ys1,Ys3):-Q is 1-P,
    is_polarized_tree(Q,A,Xs1,Xs2,Ys1,Ys2),
    is_polarized_tree(P,B,Xs2,Xs3,Ys2,Ys3).
```

The predicate \textit{dispatch}/6 is used to place formulas of each polarity on the appropriate lists.

```prolog
dispatch(0,X,[X|Xs],Xs,Ys,[]).
dispatch(1,Y,Xs,Xs,[Y|Ys],Ys).
```
After descending recursively on the formula tree and collecting the variables of each polarity on two lists (as implemented by the predicate \texttt{is_polarized_tree/6}), we will check that variables on the two lists are all different and that the two lists have the same length. This test is performed by the predicate \texttt{in_bijection/3} which also returns the value \(N\), indicating that formulas with \(2*N+1\) internal nodes will be tested for provability, knowing that we will need to have an even number of leaf variables, given the pairing of polarities.

\begin{verbatim}
\texttt{in_bijection(Ps,Qs, N):-}
 \texttt{length(Ps,K),length(Qs,K),}
 \texttt{sort(Ps,Xs),sort(Qs,Xs),}
 \texttt{length(Xs,K),N is K-1.}
\end{verbatim}

When the formula \(T\) is given as input to our implicational linear logic prover, after testing that its polarities are balanced and its size information \(N\) has been computed, we pass it to \texttt{linear_typed_normal_form}, which, given these constraints, is reversible and will compute the linear lambda term \(X\) as a proof term.

\begin{verbatim}
\texttt{prove_polarized(X,T):-is_polarized_tree(T,N),linear_typed_normal_form(N,X,T).}
\end{verbatim}

As an empirical test, after defining:

\begin{verbatim}
\texttt{test_reversible_prover(N,X,T):-gen_formula2(N,T),prove_polarized(X,T).}
\end{verbatim}

we observe that the number of solutions of \texttt{test_reversible_prover/3} follows the sequence \texttt{A262301} in \texttt{Sloane 2020}. Thus, it proves a theorem if and only if \texttt{linear_typed_normal_form} produces the formula as the principal type of a lambda term given as its \(X\) argument. Note that \texttt{gen_formula2} is used to generate arbitrary formulas with \(2N+1\) internal nodes.

\section*{4.8 Applications}

The dataset containing generated theorems and their proof-terms (as well as their \LaTeX{} tree representations marked as Prolog “\%” comments) that we make available at \url{http://www.cse.unt.edu/~tarau/datasets/lltaut/} can be used for correctness, performance and scalability testing for linear logic theorem provers, in addition to the human made tests described in \cite{Olarte2018}, as well as for providing similar tests for the Linear Haskell GHC compiler feature \cite{Bernardy2018}.

More importantly, the formula/proof-term pairs in the dataset are likely to be usable to test if deep-learning systems can perform a fairly interesting (and, in theory, learnable) theorem proving task: if trained via a seq2seq algorithm on encodings of theorems and their proof-terms, can the resulting model perform well on similar unseen formula/proof-term pairs? We have started work in that direction with promising initial results.

\section*{5 Discussion}

Proofs of implications in intuitionistic logic have long been recognized as fundamental, as they correspond to (closed) programs in functional programming. The same cannot be said about “linear implications”, as the tradition in linear logic tends to rewrite linear implications as multiplicative disjunctions (“pars” in proofnets) \cite{Girard1987}. Proofnets, notwithstanding their logical appeal in simplifying proofs, are an “acquired taste”, not shared by very many. One of our
motivation for this research was using linear lambda-calculus (Benton et al. 1993) to investigate both logical proofs in Intuitionistic Linear Logic and, further down the line, to investigate translations between it and intuitionistic logic proofs. Girard produced two such translations in his original paper on linear logic (Girard 1987). Applying these translations to well-known proofs in intuitionistic logic (as for instance those described in the classic monograph (Kleene 1952)) was a main motivation of (Olarte et al. 2018) leading to our initial interest for generating a benchmark of intuitionistic linear logic proofs, complementing the ones described in (Olarte et al. 2018).

But the hope for intuitionistic Linear Logic has always been to discover where duplication of hypotheses and, respectively, their erasure is safe, as far as the meaning of the proofs/programs is concerned. Our long term goal is to improve on the already known translations of intuitionistic logic into intuitionistic linear logic. For that, we need to know more about the universe of existing linear proofs, like how many there are, their shapes, invariant properties, etc. Much work has already been done in this direction, see for example the work on “optimal reductions” (Gonthier et al. 1992) and on “linear decorations” (Schellinx 1994). However, it seems fair to suggest that this work has not produced all the expected benefits, yet. The work described here is supposed to help with both of these aims.

6 Related Work

The classic reference for lambda calculus is (Barendregt 1984). The combinatorics and asymptotic behavior of various classes of lambda terms are extensively studied in (Grygiel and Lescanne 2013). Distribution and density properties of random lambda terms are described in (David et al. 2009). Asymptotic density properties of simple types (corresponding to tautologies in implicational intuitionistic logic) have been studied in (Genitrini et al. 2007) with the surprising result that “almost all” classical tautologies are also intuitionistic ones.

The generation and counting of affine and linear lambda terms is extensively covered in (Lescanne 2018), where, by using techniques from analytic combinatorics, much higher limits for counting (but not generating) linear lambda terms are derived, using efficient recurrence relations. By contrast, our focus here is on generation. While producing also the corresponding tautologies, our Prolog-based generators had actually go 3 orders of magnitude further than the Haskell program described in (Lescanne 2018).

We have used extensively Prolog as a meta-language for the study of combinatorial and computational properties of lambda terms in papers like (Bendkowski et al. 2017; Tarau 2015) covering different families of terms and properties. The idea of using types inferred for lambda terms as formulas for testing theorem provers originates in (Tarau 2019). The current paper extends this line of research to linear logic, specifically to the implicational fragment of linear intuitionistic propositional logic.

The closest work that we have used as starting point for the intuitionistic logic prover is (Dyckhoff 1992) describing the LJT calculus. Asymptotic behavior of linear and affine lambda terms, in relation with the BCK and BCI combinator systems, as well as bijections to combinatorial maps are studied in (Bodini et al. 2013). In (Bodini and Tarau 2017) analytic models are used to solve the problem of the asymptotic density of closable and uniquely closable skeletons, Motzkin trees that predetermine existence and uniqueness of the closed lambda terms decorating them.

The bijection between linear lambda terms in normal form and their principal types, first proven in (Mints 1992) and explained also in terms of a geometric interpretation in (Zeilberger 2015), has been instrumental in deriving the optimal final form of our term/formula pair genera-
tor as well as for turning that into an efficient implicational linear logic theorem prover, although the actual algorithms used for designing the generator as well as for deriving a theorem prover from a size-preserving bijection are a contribution of this paper.

7 Conclusions

We have derived declaratively novel algorithms for the combinatorial generation of theorems in linear logic and their proof-terms. The ability to declaratively encode constraints on the structure and the content of Prolog terms has enabled us to produce a generator for billions of theorems and their proof-terms in an important sublanguage of linear logic and to collect them into a dataset usable for testing linear logic provers and training deep-learning systems for theorem proving, an emerging new task in machine learning. By contrast to functional language implementations our algorithms fully recover space on backtracking, without even triggering Prolog’s garbage collection. This makes Prolog the language of choice for work exploring synergies between combinatorial generation, type inference and theorem proving.

References

Appendix A The Implicational Intuitionistic Theorem Prover

A.1 The LJT/G4ip Calculus

Motivated by problems related to loop avoidance when implementing Gentzen’s LJ calculus, Roy Dyckhoff (Dyckhoff 1992) introduces the following rules for his LJT calculus.

\[\text{LJT}_1 : \quad A, \Gamma \vdash A \]

\[\text{LJT}_2 : \quad A, \Gamma \vdash B \quad \Gamma \vdash A \rightarrow B \]

\[\text{LJT}_3 : \quad B, A, \Gamma \vdash G \quad A \rightarrow B, A, \Gamma \vdash G \]

\[\text{LJT}_4 : \quad D \rightarrow B, \Gamma \vdash C \rightarrow D \quad B, \Gamma \vdash G \]

\[(C \rightarrow D) \rightarrow B, \Gamma \vdash G \]

The rules work with the context \(\Gamma \) being either a multiset or a set.

A.2 Extracting Proof Terms

We refer to (Tarau 2019) for the derivation steps leading from this calculus to Prolog-based theorem provers implementing it. We will focus here on extracting proof terms from a prover adapted to cover the implicational fragment of propositional linear intuitionistic logic.

Extracting the proof terms (lambda terms having the formulas we prove as types) is achieved by decorating the code with application nodes \(a/2 \), lambda nodes \(l/2 \) (with first argument a logic variable) and leaf nodes (labeled with logic variables, same as the identically named ones in the first argument of the corresponding \(l/2 \) nodes).

The fact that this is essentially the inverse of a type inference algorithm (e.g., the Prolog-based one in (Tarau 2017)) points out how the decoration mechanism works.

\[
\text{prove ipc}(T, \text{ProofTerm}):=\text{prove ipc}(\text{ProofTerm}, T, []) \% proof ipc(T, ProofTerm) :-
\]

\[
\text{prove ipc}(X, A, Vs) :- \text{memberchk}(X: A, Vs), !. \% \text{leaf variable}
\]

\[
\text{prove ipc}(l(X, E), (A \leftarrow o \rightarrow B), Vs) :- !, \text{prove ipc}(E, B, [X:A|Vs]). \% \text{lambda term}
\]

\[
\text{prove ipc}(E, G, Vs1) :-
\]

\[
\text{member}(_V, Vs1), \text{head_of}(V, G), !, \% \text{fast fail if non-tautology}
\]

\[
\text{select}(S: (A \leftarrow o \rightarrow B), Vs1, Vs2), \quad \% \text{source of application}
\]

\[
\text{prove ipc_imp}(T, A, B, Vs2), \quad \% \text{target of application}
\]

\[
!, \quad \text{prove ipc}(E, G, [a(S, T):B|Vs2]). \% \text{application}
\]

\[4\] Also called the G4ip calculus. Restricted here to the implicational fragment.
prove_ipc_imp(l(X,E),(C \ o\ D),B,Vs):-!,
prove_ipc(E,(C \ o\ D),[X:(D \ o\ B)|Vs]).
prove_ipc_imp(E,A,_,Vs):-memberchk(E:A,Vs).

% optimization for quicker failure
head_of(_ \ o\ B,G):-!,head_of(B,G).
head_of(G,G).

Thus, lambda nodes decorate implication introductions and application nodes decorate modus ponens reductions in the corresponding calculus. Note that the two clauses of \texttt{prove_ipc_imp} provide the target node T. When seen from the type inference side, T is the type resulting from cancelling the source type S and the application type $S \rightarrow T$.