Fundamenta Informaticae XX (2020) 1-31 1
DOI 10.3233/F1-2016-0000
10S Press

Deriving Efficient Sequential and Parallel Generators for Closed
Simply-Typed Lambda Terms and Normal Forms

Paul Tarau
Department of Computer Science and Engineering
University of North Texas

paul.tarau@unt.edu

Abstract. Contrary to several other families of lambda terms, no closed formula or generating
function is known and none of the sophisticated techniques devised in analytic combinatorics can
currently help with counting or generating the set of simply-typed closed lambda terms of a given
size.

Moreover, their asymptotic scarcity among the set of closed lambda terms makes counting them
via brute force generation and type inference quickly intractable, with previous published work
showing counts for them only up to size 10.

By taking advantage of the synergy between logic variables, unification with occurs check and ef-
ficient backtracking in today’s Prolog systems, we climb 4 orders of magnitude above previously
known counts by deriving progressively faster sequential Prolog programs that generate and/or
count the set of closed simply-typed lambda terms of sizes up to 14. Similar counts for closed
simply-typed normal forms are also derived up to size 14.

Finally, we devise several parallel execution algorithms, based on generating code to be uniformly
distributed among the available cores, that push the counts for simply typed terms up to size 15
and simply typed normal forms up to size 16. As a remarkable feature, our parallel algorithms
are linearly scalable with the number of available cores.

Keywords: logic programming transformations, type inference, simply-typed lambda terms and
normal forms, sequential and parallel combinatorial generation algorithms, Prolog multi-threading

1. Introduction

This paper is an extended and updated version of [1], with new material centered around parallel
algorithms bringing speed-ups linear in the number of processors used.

2 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

Generation of lambda terms [2] has practical applications to testing compilers that rely on lambda
calculus as an intermediate language, as well as in generation of random tests for user-level programs
and data types. At the same time, several instances of lambda calculus are of significant theoreti-
cal interest given their correspondence with logic and proofs. Among them, simply-typed lambda
terms [3, 4] enjoy a number of nice properties, among which strong normalization (termination for all
evaluation-orders), a cartesian closed category mapping and a set-theoretical semantics. More impor-
tantly, via the Curry-Howard correspondence [5, 6], lambda terms that are inhabitants of simple types
can be seen as proofs for tautologies in the implicational fragment of intuitionistic propositional logic
which, in turn, correspond to the types. Generation of large simply-typed lambda terms can also help
with automation of testing and debugging compilers for functional programming languages [7].

Recent work on the combinatorics of lambda terms [8, 9, 10, 11], relying on recursion equations,
generating functions and techniques from analytic combinatorics [12] has provided counts for several
families of lambda terms and clarified important properties like their asymptotic density. With the
techniques provided by generating functions [12], it was possible to separate the counting of the terms
of a given size for several families of lambda terms from their more computation intensive generation,
resulting in several additions (e.g., A220894, A224345, A114851) to The On-Line Encyclopedia of
Integer Sequences, [13].

On the other hand, the combinatorics of simply-typed lambda terms, given the absence of closed
formulas, recurrence equations or grammar-based generators, due to the intricate interaction between
type inference and the applicative structure of lambda terms, has left important problems open, in-
cluding the very basic one of counting the number of closed simply-typed lambda terms of a given
size. At this point, obtaining counts for simply-typed lambda terms requires going through the more
computation-intensive generation process.

As a fortunate synergy, Prolog’s sound unification of logic variables, backtracking and definite
clause grammars have been shown to provide compact combinatorial generation algorithms for various
families of lambda terms [14, 15, 16, 17].

For the case of simply-typed lambda terms, we have pushed (in the unpublished draft [18]) the
counts in sequence A220471 of [13, 8] to cover sizes 11 and 12, each requiring about one magnitude
of extra computation effort, simply by writing the generators in Prolog. In this paper we focus on
going two more magnitudes higher, while also integrating the results described in [18], and one more
orders of magnitude using parallel algorithms. Using similar techniques, we achieve the same, for the
special case of simply-typed normal forms with a two order of magnitude gain via parallelization.

The paper is organized as follows. Section 2 describes our representation of lambda terms and
derives a generator for closed lambda terms. Section 3 defines generators for well-formed type formu-
las. Section 4 introduces a type inference algorithm and then derives, step by step, efficient generators
for simply-typed lambda terms and simple types inhabited by terms of a given size. Section 5 defines
generators for closed lambda terms in normal form and then replicates the derivation of an efficient
generator for simply-typed closed normal forms. Section 6 aggregates our experimental performance
data for sequential execution. Section 7 describes several generic algorithms for parallelization of the
generation of simply typed lambda terms and normal forms. Section 8 evaluates their performance and
scalability improvements. Section 9 discusses possible extensions and future improvements. Section
10 overviews related work and section 11 concludes the paper.

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 3

The paper is structured as a literate Prolog program. The code has been tested with SWI-Prolog
7.21.40 (including multi-thread execution) and YAP 6.3.4 (sequential execution only). It is also avail-
able as a separate file at http://wuw.cse.unt.edu/~tarau/research/2018/parlgen.pro.

2. Deriving a generator for lambda terms

Lambda terms can be seen as Motzkin trees [19], also called unary-binary trees, labeled with lambda
binders at their unary nodes and corresponding variables at the leaves. We will thus derive a generator
for them from a generator for Motzkin trees.

2.1. A canonical representation with logic variables

We can represent lambda terms [2] in Prolog using the constructors a/2 for applications, 1/2 for
lambda abstractions and v/1 for variable occurrences. Variables bound by the lambdas and their occur-
rences are represented as logic variables. As an example, the lambda term Aa.(Ab.(a (b b)) Ac.(a(cc)))
will be represented as 1(A,a(1(B,a(v(A),a(v(B),v(B)))),1(C,a(v(A),a(v(C),v(C)))))).
As Prolog variables share a unique scope (the clause containing them), this representation assumes
that distinct variables are used for distinct scopes induced by the lambda binders in terms occurring in
a given Prolog clause. Such terms are generated, for instance, when one converts a term representation
using de Bruijn indices to one using named variables, as shown in [18].

Lambda terms might contain free variables not associated to any binders. Such terms are called
open. A closed term is such that each variable occurrence is associated to a binder.

2.2. Generating Motzkin trees

Motzkin-trees (also called binary-unary trees) have internal nodes of arities 1 or 2. Thus they can be
seen as a skeleton of lambda terms that ignores binders and variables and their leaves.

The predicate motzkin/2 generates Motzkin trees with S internal nodes, with S represented in
unary notation with the functor s/1.

motzkin(S,X) :-motzkin(X,S,0).

motzkin(v)-->[].
motzkin(1(X))-->down,motzkin(X).
motzkin(a(X,Y))-->down,motzkin(X) ,motzkin(Y).

down (s (X),X).

Motzkin-trees, with leaves assumed of size 1 are counted by the sequence A001006 in [13]. Al-
ternatively, as in our case, when leaves are assumed of size 0, we obtain binary-unary trees with S
internal nodes, counted by the entry A006318 (Large Schroder Numbers) of [13].

In Prolog, a convenient way to automate defining chains of arguments operating on an evolving

state in a backtrackable way, is by using Definite Clause Grammars (DCGs), which transform a clause
defined with “-->" like

4 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

a0 --> al,a2,...,an.
into
a0(80,Sn):-a1(80,81),a2(s81,82),...,an(Sn-1,Sn).

In our case, this expands a clause like:
motzkin(1(X))-->down,motzkin(X).

into
motzkin(1(X),S1,84) :-down(S1,S2) ,motzkin(X,S2,83).

We will use this mechanism repeatedly in the paper.

Note the use of the predicate down/2, that assumes natural numbers in unary notation, withn s/1
symbols wrapped around O to denote n € N. As our combinatorial generation algorithms will usually
be tractable for values of n below 15, the use of unary notation is comparable (and often slightly
faster) than the call to arithmetic built-ins. Note also that this leads, after the DCG translation, to
“pure” Prolog programs made exclusively of Horn Clauses, as the DCG notation can be eliminated by
threading two extra arguments controlling the size of the terms, a fact mostly relevant as a witness for
the expressiveness of this subset of Prolog.

To more conveniently call these generators with the usual natural numbers we define the converter
n2s as follows.

n2s(0,0).
n2s(N,s(X)):-N>0,N1 is N-1,n2s(N1,X).

Example 1. Motzkin trees with 2 internal nodes.

?7- n2s(1,S) ,motzkin(S,T).
S =500, T=1W) ;
S =s5), T-=alv, v)

2.3. Generating closed lambda terms

We derive a generator for closed lambda terms by adding logic variables as labels to their binder and
variable nodes, while ensuring that the terms are closed, i.e., that the function mapping variables to
their binders is total.

The predicate 1ambda/2 builds a list of logic variables as it generates binders. When generating
a leaf variable, it picks “nondeterministically” one of the binders among the list of binders available,
Vs. As in the case of Motzkin trees, the predicate down/2 controls the number of internal nodes.

lambda(S,X) :-lambda(X, [],S,0).
lambda (v (V) ,Vs)-—>{member (V,Vs)}.

lambda(1(V,X),Vs)-—>down,lambda(X, [V|Vs]).
lambda(a(X,Y),Vs)-->down,lambda(X,Vs),lambda(Y,Vs).

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 5

The sequence A220471 in [13, 8] contains counts for lambda terms of increasing sizes, with size
defined as the number of internal nodes.

Example 2. Closed lambda terms with 2 internal nodes.

?- lambda(s(s(0)),Term).
Term = 1(A, 1(B, v(B))) ;
Term = 1(A, 1(B, v(d))) ;
Term = 1(A, a(v(h), v(A)))

3. A visit to the other side: the language of types

As a result of the Curry-Howard correspondence [5], the language of types is isomorphic with that
of the implicational fragment of intuitionistic propositional logic, with binary trees having variables
at leaf positions and the implication operator (“->”) at internal nodes. We will rely on the right
associativity of this operator in Prolog, that matches the standard notation in type theory.

The predicate type_skel/3 generates all binary trees with given number of internal nodes and
labels their leaves with unique logic variables. It also collects the variables to a list returned as its third
argument.

type_skel(S,T,Vs) :-type_skel(T,Vs, [],S,0).

type_skel(V, [V|Vs],Vs)-->[].
type_skel ((X->Y),Vs1,Vs3)-->down,type_skel (X,Vs1,Vs2) ,type_skel(Y,Vs2,Vs3).

Type skeletons are counted by the Catalan numbers (sequence A000108 in [13]).

Example 3. All type skeletons for N=2 and N=3.

?7- type_skel(s(s(0)),T,_).
T = (A->B->C) ;
T = ((A->B)->C)

?7- type_skel(s(s(s(0))),T,_).
T = (A->B->C->D) ;

T = (A-> (B->C)->D) ;

T = ((A->B)->C->D) ;

T = ((A->B->C)->D) ;

T = (((A->B)->C)->D)

The next step toward generating the set of all type formulas is observing that logic variables define
equivalence classes that can be used to generate partitions of the set of variables, simply by selectively
unifying them.

The predicate mpart_of/2 takes a list of distinct logic variables and generates partitions-as-
equivalence-relations by unifying them ‘“nondeterministically”. It also collects the unique variables,
defining the equivalence classes as a list given by its second argument.

6 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

mpart_of ([1,[1).
mpart_of ([U|Xs], [U|Us]) : -mcomplement_of (U,Xs,Rs) ,mpart_of (Rs,Us) .

To implement a set-partition generator, we will split a set repeatedly in subset+complement pairs
with help from the predicate mcomplement_of/2.

mcomplement_of (_, [1,[]).

mcomplement_of (U, [X|Xs] ,NewZs) : -mcomplement_of (U,Xs,Zs) ,mplace_element (U,X,Zs,NewZs) .
mplace_element (U,U,Zs,Zs) .

mplace_element (_,X,Zs, [X|Zs]).

To generate set partitions of a set of variables of a given size, we build a list of fresh variables with the
equivalent of Prolog’s 1length predicate working in unary notation, len/2.

partitions(S,Ps):-1len(Ps,S) ,mpart_of (Ps,_).

len([],0).
len([_|Vs],s(L)):-1len(Vs,L).

The count of the resulting set-partitions (Bell numbers) corresponds to the entry A000110 in [13].
Example 4. Set partitions of size 3 expressed as variable equalities.

?7- partitions(s(s(s(0))),P).
P =[A, A, A] ;

P = [A, B, A] ;
P = [A, A, B] ;
P = [A, B, B] ;
P = [A, B, C].

We can then define the language of formulas in intuitionistic implicational logic, among which
tautologies will correspond to simple types, as being generated by the predicate maybe_type/3.

maybe_type(L,T,Us) :~type_skel(L,T,Vs) ,mpart_of (Vs,Us) .

Example 5. Well-formed formulas of the implicational fragment of intuitionistic propositional logic
(possibly types) of size 2.

7- maybe_type(s(s(0)),T,_).
= (A->A->h) ;

= (A->B->A) ;

= (A->A->B) ;

= (A->B->B) ;

= (A->B->C) ;
((A->A)->h) ;
= ((A->B)->A) ;
= ((A->A)->B) ;
= ((A->B)->B) ;
= ((A->B)->C)

HHEHAAHAAd3d434
]

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 7

The sequence 2,10,75,728,8526,115764,1776060,30240210, counting these formulas corre-
sponds to the product of the Catalan number of size n and Bell number of size n+ 1, (A289679 in
[13,1]).

4. Merging the two worlds: generating simply-typed lambda terms

One can observe that per-size counts of both the sets of lambda terms and their potential types are
very fast growing. There is an important difference, though, between computing the type of a given
lambda term (if it exists) and computing an inhabitant of a type (if it exists). The first operation,
called rype inference is an efficient operation (linear in practice) while the second operation, called the
inhabitation problem is PSPACE complete [20].

This brings us to design a type inference algorithm that takes advantage of operations on logic
variables.

4.1. A type inference algorithm

While in a functional language inferring types requires implementing unification with occurs-check,
as shown for instance in [8], this operation is available in most Prologs as a built-in predicate (called
unify with_occurs_check/2), optimized in SWI-Prolog [21] to proceed incrementally, only check-
ing that no new cycles are introduced during the unification step as such.

The predicate infer_type/3 works by using logic variables as dictionaries associating lambda
terms to their types. Each logic variable is then bound to a lambda term of the form X: T where X will
be a component of a fresh copy of the term and T will be its type. Note that we create this new lambda
term as the original term’s variables end up loaded with chunks of the partial types created during the
type inference process.

As logic variable bindings propagate between binders and occurrences, this ensures that types are
consistently inferred.

infer_type((v(XT)),v(X),T) :-unify_with_occurs_check(XT,X:T).
infer_type(1((X:TX),A),1(X,NewA), (TX->TA)) :-infer_type(A,NewA,TA).
infer_type(a(A,B),a(X,Y),TY) :~infer_type(A,X, (TX->TY)) ,infer_type(B,Y,TX) .

Example 6. illustrates typability of the term corresponding to the S combinator
Axp.Axy.Axy.((x0 x2) (x1 Xx2))
and untypabilty of the term corresponding to the Y combinator

Axp.(Ax1.(xo (x1 x1)) Axz.(x0 (X2 x2)))-

7- infer_type(1(A,1(B,1(C,ala(v(A),v(C)),a(v(B),v(C)))))),X,T),
portray_clause((T:-X)),fail.

(A->B->C)-> (A->B)->A->C :-
1(D,1(F,1(E, ala(v(D), v(E)), a(wv(F), v(E))DN).

?7- infer_type(
1(A,a(1(B,a(v(A),a(v(B),v(B)))),1(C,a(v(A),a(v(C),v(C)))))), X, T).
false.

8 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

By combining generation of lambda terms with type inference we have our first cut to an already
surprisingly fast generator for simply-typable lambda terms, able to generate in a few hours counts for
sizes 11 and 12 for sequence A220471 in [13, 8].

lamb_with_type(S,X,T) :-lambda(S,XT) ,infer_type(XT,X,T).

Example 7. Lambda terms of size up to 3 and their types.

?7- lamb_with_type(s(s(s(0))),Term,Type) .

Term = 1(A, 1(B, 1(C, v(C)))), Type = (D->E->F->F) ;
Term = 1(A, 1(B, 1(C, v(B)))), Type = (D->E->F->E) ;
Term = 1(A, 1(B, 1(C, v(A)))), Type = (D->E->F->D) ;

Term = 1(A, 1(B, a(v(B), v(A)))), Type = (C-> (C->D)->D) ;
Term = 1(A, 1(B, a(v(4), v(B)))), Type = ((C->D)->C->D) ;
Term = 1(A, a(v(4), 1(B, v(B)))), Type = (((C->C)->D)->D) ;
Term = 1(A, a(1(B, v(B)), v(A))), Type = (C->C) ;

Term = 1(A, a(1(B, v(A)), v(A))), Type = (C->C) ;

Term = a(1(A, v(A)), 1(B, v(B))), Type = (C->C).

Note that, for instance, when one wants to select only terms having a given type, this is quite inef-
ficient. Next, we will show how to combine size-bound term generation, testing for closed terms and
type inference into a single predicate. This will enable more efficient querying for terms inhabiting
a given type, as one would expect from Prolog’s multi-directional execution model, and more impor-
tantly for our purposes, to climb two orders of magnitude higher for counting simply-typed terms of
size 13 and 14.

4.2. Interleaving term generation and type inference

We need two changes to infer_type to turn it into an efficient generator for simply-typed lambda
terms. First, we need to add an argument to control the size of the terms and ensure termination,
by calling down/2 for internal nodes. Second, we need to generate the mapping between binders
and variables. We ensure this by borrowing the member/2-based mechanism used in the predicate
lambda/4 generating closed lambda terms in subsection 2.3.

The predicate typed_lambda/3 does just that, with helper from DCG-expanded typed_lambda/5.

typed_lambda(S,X,T) : ~typed_lambda(_XT,X,T, [],S,0).

typed_lambda (v (V:T),v(V),T,Vs)-—> {
member (V:TO,Vs),
unify_with_occurs_check(TO,T)
}.
typed_lambda (1 (X:TX,A),1(X,NewA), (TX->TY),Vs)-->down,
typed_lambda(A,NewA,TY, [X:TX|Vs]) .
typed_lambda(a(A,B),a(NewA,NewB) ,TY,Vs)-->down,
typed_lambda(A,NewA, (TX->TY) ,Vs),
typed_lambda(B,NewB,TX,Vs) .

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 9

Like 1ambda/4, the predicate typed_lambda/5 relies on Prolog’s DCG notation to thread together the
steps controlled by the predicate down/2. Note also the nondeterministic use of the built-in member/2
that enumerates values for variable:type pairs ranging over the list of available pairs Vs, as well
as the use of unify with_occurs_check to ensure that unification of candidate types does not create
cycles.

Example 8. A simply-typed term of size 15 and its type.

1(A,1(B,1(C,1(D,1(E,1(F,1(G,1(H,1(1,1(J,1(K,
a(v(D),1(L,alaw(E),v(I)),v(I)))IIIIIIIINI)
M->N->0->P-> (Q->Q->R)->S->T->U-> ((V->R)->W)->Q->X->W

We will discuss exact performance data later, but let’s note here that this operation brings down
by an order of magnitude the computational effort to generate simply-typed terms. As expected, the
number of solutions is computed as the sequence A220471 in [13, 8]. Interestingly, by interleaving
generation of closed terms and type inference in the predicate typed_lambda, the time to generate all
the closed simply-typed terms is actually shorter than the time to generate all closed terms of the same
size, e.g., 10.313 vs. 20.763 seconds for size 10 (see section 6). As, via the Curry-Howard isomor-
phism, closed simply typed terms correspond to proofs of tautologies in the implicational fragment
of intuitionistic propositional logic, co-generation of terms and types corresponds to co-generation of
tautologies and their proofs for proofs of a given length.

4.3. One more trim: generating inhabited types

Let’s first observe that the actual lambda term does not need to be built, provided that we mimic exactly
the type inference operations that one would need to perform to ensure it is simply-typed. It is thus safe
to remove the first argument of typed_lambda/5 as well as the building of the fresh copy performed
in the second argument. To further simplify the code, we can also make the DCG-processing of the
size computations explicit, in the last two arguments.

This gives the predicate inhabited_type/4 and then inhabited_type/2, that generates all
types having inhabitants of a given size, but omits the inhabitants as such.

inhabited_type(X,Vs,N,N):-
member (V,Vs) ,
unify_with_occurs_check(X,V).
inhabited_type ((X->Xs),Vs,s(N1) ,N2):-
inhabited_type (Xs, [X|Vs],N1,N2).
inhabited_type(Xs,Vs,s(N1),N3):-
inhabited_type ((X->Xs),Vs,N1,N2),
inhabited_type(X,Vs,N2,N3).

Clearly, the multiset of generated types has the same count as the set of the inhabitants they are
derived from. This simplification brings us an additional 1.5x speed-up.

inhabited_type(S,T) :-inhabited_type(T, [],S,0).

10 Paul Tarau / Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

One more (easy) step, giving a 3x speed-up, makes reaching counts for sizes 13 and 14 achievable:
on a faster machine, using a slightly faster Prolog, with a similar unify with_occurs_check built-in,
like YAP [22], with the value for size 14 computed in less than a day.

Example 9. The sequence A220471 completed up to N=14

first 10: 1,2,9,40,238,1564,11807,98529,904318,9006364

11: 96,709,332
12: 1,110,858,977

13: 13,581,942,434
14: 175,844,515,544

5. Doing it once more: generating closed simply-typed normal forms

We will devise similar methods for an important subclass of simply-typed lambda terms.

5.1. Generating normal forms

Normal forms are lambda terms that cannot be further reduced. A normal form should not be an
application with a lambda as its left branch and, recursively, its subterms should also be normal forms.
As normalization preserves typability, generating them is relevant for the study simple typed lambda
terms.

The predicate normal_form/2 uses normal_form/4 to define them inductively and generates all
normal forms with S internal nodes.

normal_form(S,T) :-normal_form(T, [],S,0).

normal_form(v(X),Vs)-——->{member (X,Vs)}.
normal_form(1(X,A),Vs)-—>down,normal_form(A, [X|Vs]).
normal_form(a(v(X),B),Vs)-->down,normal _form(v(X),Vs) ,normal_form(B,Vs).
normal_form(a(a(X,Y),B),Vs)-->down,normal _form(a(X,Y),Vs) ,normal_form(B,Vs).

Example 10. illustrates closed normal forms with 2 internal nodes.

?- normal_form(s(s(0)),NF).
NF = 1(4, 1(B, v(B))) ;
NF = 1(A, 1(B, v(4))) ;
NF = 1(A, a(v(A), v(A)))

The number of solutions of our generator replicates entry A224345 in [13, 8] that counts closed normal
forms of various sizes.

The predicate nf_with_type/3 applies the type inference algorithm to the generated normal
forms of size S.

nf_with_type(S,X,T):-normal_form(S,XT),infer_type(XT,X,T).

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 11

5.2. Merging in type inference

Like in the case of the set of simply-typed lambda terms, we can define the more efficient combined
generator and type inferrer predicate typed-nf.

typed_nf (S,X,T) :-typed_nf (_XT,X,T, [],S,0).

It works by calling the DCG-expanded typed_nf predicate, with the last two arguments enforcing
the size constraints.

typed_nf (v(V:T),v(V),T,Vs)-—> {
member (V:TO,Vs),
unify_with_occurs_check(TO,T)
}.

typed_nf (1(X:TX,A),1(X,Newd), (TX->TY) ,Vs)-->down,
typed_nf (A,NewA,TY, [X:TX|Vs]).

typed_nf (a(v(A),B),a(NewA,NewB) ,TY,Vs)-->down,
typed_nf (v(A) ,NewA, (TX->TY) ,Vs),
typed_nf (B,NewB,TX,Vs) .

typed_nf (a(a(Al1,A2),B) ,a(NewA,NewB) ,TY,Vs)-->down,
typed_nf (a(A1,A2) ,NewA, (TX->TY),Vs),
typed_nf (B,NewB,TX,Vs) .

Example 11. Simply-typed normal forms up to size 3.
7- typed_nf(s(s(s(0))),Term,Type) .
Term = 1(A, 1(B, 1(C, v(C)))),

Type = (D->E->F->F) ;

Ternm = 1(A, a(v(A), 1(B, v(B)))),
Type (((C->C)->D)->D)

We are now able to efficiently generate counts for simply-typed normal forms of a given size.

Example 12. Counts for closed simply-typed normal forms up to N=14.
first 10: 1,2,6,23,108,618,4092,30413,252590,2297954

11: 22,640,259
12: 240,084,189
13: 2,721,455,329
14: 32,783,910,297

Note that if we want to just collect the set of types having inhabitants of a given size, the preservation
of typability under B-reduction property [4] would allow us to work with the (smaller) set of simply-
typed terms in normal form. Like in the case of general lambda terms, we can drop the generation
of actual lambda terms and generate only the inhabitable types, shown here, with the DCG-expansion
made explicit.

12 Paul Tarau / Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

Size closed A-terms gen, then infer gen + infer inhabitants typed normal form
1 15 19 16 9 19
2 44 59 50 28 47
3 166 261 188 113 127
4 810 1,517 864 553 429
5 4,905 10,930 4,652 3,112 1,814
6 35,372 92,661 28,878 19,955 9,247
7 294,697 895,154 202,526 143,431 55,219
8 2,776,174 9,647,495 1,586,880 1,146,116 371,745
9 29,103,799 114,273,833 13,722,618 10,073,400 2,896,982

10 335,379,436 1,471,373,474 129,817,948 96,626,916 24,556,921
Figure 1. Number of logical inferences used by our generators, as counted by SWI-Prolog
Size closed A-terms gen, then infer gen + infer inhabitants typed normal form
5 0.000 0.000 0.001 0.000 0.000
6 0.002 0.006 0.002 0.002 0.001
7 0.017 0.059 0.016 0.010 0.005
8 0.161 0.628 0.122 0.079 0.032
9 1.745 7.607 1.067 0.713 0.252
10 20.763 98.259 10.313 6.947 2.059

Figure 2. Timings (in seconds) for our generators up to size 10 (on a 2017 iMacPro with Xeon W Processor)

% types with inhabitants in normal form, directly

inh_nf_direct_with_succ(S,T):-inh_nf_direct(T,[],S,0).

inh_nf_direct(P,Ps,N1,N2):-inh_nf no_left_lambda_direct(P,Ps,N1,N2).

inh_nf_direct((P->Q),Ps,s(N1),N2):-inh_nf_direct(Q, [P|Ps],N1,N2).

inh_nf_no_left_lambda_direct(P, [Q|Ps],N,N):-hypo_type(P, [QIPs]).

inh_nf_no_left_lambda_direct(Q,Ps,s(N1),N3) :-
inh_nf_no_left_lambda_direct((P->Q),Ps,N1,N2),
inh_nf_direct(P,Ps,N2,N3).

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 13

Term Generator | Term Size | YAP SWI-Prolog
lambda 8 0.204 0.159
lambda 9 2.189 1.702
lambda 10 25.559 | 13.443
typed_lambda 8 0.156 0.126
typed_lambda 9 1.387 1.058
typed_lambda 10 13.443 10.19

Figure 3. YAP vs. SWI-Prolog sequential execution times (in seconds)

6. Performance of sequential execution

Figure 1 gives the number of logical inferences as counted by SWI-Prolog. This is a good measure of
computational effort except for counting operations like unify_with_occurs_check as a single step,
while its actual complexity depends on the size of the terms involved. Therefore, figure 2 gives actual
timings for the same operations above N=5, where they start to be meaningful.

The “closed A-terms” column gives logical inferences and timing for generating all closed
lambda terms of size given in column 1. The column “gen, then infer” covers the algorithm that
first generates lambda terms and then infers their types. The column “gen + infer” gives perfor-
mance data for the significantly faster algorithm that merges generation and type inference in the same
predicate. The column “inhabitants” gives data for the case when actual inhabitants are omitted in
the merged generation and type inference process. The column “typed normal form” shows results
for the fast, merged generation and type inference for terms in normal form.

Note that the performance gap between the last two columns comes from the fact that the typed
normal form generator builds the actual lambda term, while the the code checking the existence of
inhabitants avoids that.

Note also that performance of generating typed terms or inhabitable types is significantly better
than just generating closed terms. This is explained by the fact that early failure in occurrence checking
acts as a constraint that avoids term building as early as possible.

As our sequential code is highly portable, we have hoped that using a Prolog known to be, in
general, faster than SWI-Prolog can provide additional speed-up.

Figure 3 compares the performance of the YAP system [22], version 6.5.0, and SWI-Prolog 8.1.3,
both with optimization turned on (-O for SWI-Prolog and -J4 for YAP) and and both compiled on the
same 18-core iMac-Pro machine running OS-X 10.15.2.

Surprisingly, SWI-Prolog turned out to be slightly faster, possibly due to faster backtracking on its
virtual machine or its more efficient memory reclamation. This also hints towards the fact, known to
this author since the early 90’s [23, 24] that the usual assumptions about performance of Prolog im-
plementations do not extend in an obvious way to “OR-intensive” programs like our term generators.

14 Paul Tarau / Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

7. Parallel term generation and counting

7.1. Some parallelization challenges

Prolog has a rich history of virtual machines customized for parallel programming, overviewed in [25].
Unfortunately, after a few hundred papers and a dozen of systems, no implementation has survived in
a usable Prolog system. A shared feature of these bygone systems is their fine-grained shared-memory
parallel execution model, that contrasts with the fairly language independent message-passing multi-
threading execution model prevalent today.

As we adopt the robust and well-designed multi-threading API implementation of SWI-Prolog'
[26], which uses message passing to communicate between threads, we will need to devise a coarse-
grained parallelization mechanism ensuring that maximum performance is extracted from the under-
lying native threads. While expressive and easy to work with, message queues involve double copy-
ing from the heaps of the communicating threads. Clearly, that precludes any attempt to parallelize
fine-grained execution steps. On the other hand, generating and filtering terms in the presence of
backtracking, hints toward the need for devising a coarse-grained model of OR-parallel execution,
as combinatorial generation problems are typically written in an “OR-intensive” programming style
[24], ensuring the compact memory footprint and scalability required when dealing with trillions of
generated terms.

This also means that we need to minimize communication overhead and synchronization costs
while avoiding single points of contention. At the same time, we will need to balance the load as
uniformly as possible to keep running the native threads at full speed with as little task switching as
possible.

Next, we devise a stepwise refinement process that will progressively achieve all these objectives.

7.2. The “generate and execute” pattern

To get some real speed-up from parallel execution, given the granularity of thread-based parallel pro-
gramming, with stack, trail, heap local to each thread, one needs to find a way to split the code execu-
tion such that all available native threads can be kept busy, while communication and synchronization
costs are kept low.

One way to do this would be to generate closed terms and delegate type-inference to the threads.
But then we would lose the 1-2 orders of magnitude speed-up coming from interleaving generation
and type inference. Thus, we need to ensure that at least some type inference steps are interleaved
with generation.

We can achieve this by modifying the predicate typed_lambda given in subsection 4.2, to gener-
ate, at each step, a constraint, hypo (X,P,Ps) stating that, hypothetically, for some member X :Q of Ps
the types P and Q will unify. The constraint is specified by the predicate hypo/3. As the interleaved
term generation and type inference proceeds, constraints are added to a DCGs stream by the predicate
add_hypo/5.

hypo(X,P,Ps) : —-member (X:Q,Ps) ,unify_with_occurs_check(P,Q).

Uhttp://www.swi-prolog.org/man/threads.html

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 15

add_hypo(X,P,Ps, (hypo(X,P,Ps),Gs),Gs).

Thus, with the DCG transformation maintaining the accumulation of the hypo/3 constraints into
a conjunction of Prolog goals, we obtain typed/3, which, otherwise, mimics the execution mechanism
of type_lambda in subsection 4.2.

typed(X,P, [QIPs] ,N,N)-->add_hypo(X,P, [QIPs]) .
typed(l(X,A) , (P->Q) ,Ps,s(N1) ,N2)——>typed(A,Q, [X:P|Ps],N1,N2).
typed(a(A,B),Q,Ps,s(N1),N3)-—>

typed(A, (P->Q) ,Ps,N1,N2),

typed (B,P,Ps,N2,N3) .

By initializing the conjunction stream with true and collecting the accumulated constraint goals
into the conjunction Gs, we obtain the predicate typed/3 returning as its argument Gs, executable
code, ready to be used in sequential or parallel mode.

typed(N,X:T,Gs) : -n2s(N,S) ,typed(X,T, [1,5,0,Gs,true).

Thus, the sequential use, as defined by typed/2, is equivalent to the predicate typed_lambda/3 in
section 4.2.

typed(N,X:T) :-typed(N,X:T,Gs) ,call(Gs).

Example 13. Generating the executable constraints:

?- typed(4,X:T,Gs).

X 1(A, 1(B, 1(C, 1(D, E)))),

T (F->G->H->I->J),

Gs = (hypo(E, J, [D:I, C:H, B:G, A:F]), true) ;

X =1(4, 1(@B, 1(C, a(d, E)))),

T = (F->G->H->I),

Gs = (hypo(D, (J->I), [C:H, B:G, A:F]), hypo(E, J, [C:H, B:G, A:F]), true) ;

One can see that the first stage of the computation derives a possible type template. When ex-
ecuting the generated constraints, one can either refine these templates, or discard them when the
unifications triggered in hypo/3 fail.

Example 14. Generating and running the executable constraints:

?7- typed(4,X:T,Gs),call(Gs).

X = 1(a, 1(B, 1(C, 1(D, D)),

T = (E->F->G->H->H),

Gs = (hypo(D, H, [D:H, C:G, B:F, A:E]), true) ;
X =1(, 1(B, 1(C, 1(D, ©C)))),

T = (E->F->G->H->G),

Gs = (hypo(C, G, [D:H, C:G, B:F, A:E]), true) ;

16 Paul Tarau / Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

In fact, if one partially evaluates the use of member/2 in predicate hypo/3 into a set of equivalent
disjunctions, it becomes clear that we have compiled the interleaved generation and type inference
of typed_lambda/3 into a conjunction of disjunctions, ready to be run on independent threads, with
non-determinism brought by the disjunctive components (or the action of member/2), and the filtering
for correctness of the inferred types provided by the conjunction list.

As the derivation steps from closed normal forms to simply typed normal forms are similar to
those described for general lambda terms, we will describe here only the last step.

The same mechanism can be used for generating simply typed normal forms, except that the
generator will avoid placing lambda nodes on the left branch of an application node.

tnf (N,X:T) :-tnf (N,X:T,Gs),Gs.
tnf (N,X:T,Gs) :-n2s(N,S) ,tnf (X,T, []1,S,0,Gs,true) .

tnf (X,P,Ps,N1,N2)-->tnf_no_left_lambda(X,P,Ps,N1,N2).
tnf (1(X,4), (P->Q),Ps,s(N1) ,N2)-->tnf (A,Q, [X:P|Ps] ,N1,N2).

tnf_no_left_lambda(X,P, [QIPs],N,N)-->add_hypo(X,P, [QIPs]).
tnf_no_left_lambda(a(A,B),Q,Ps,s(N1),N3)-->
tnf_no_left_lambda(A, (P->Q),Ps,N1,N2),
tnf (B,P,Ps,N2,N3) .

We will next see how to fit this generate and execute pattern, into SWI-Prolog’s actual multi-
threading constructs. Note that keeping it as general as possible will not only simplify our logic, but
also result in reusable code, beneficial to easily parallelize similar combinatorial generation problems.

7.3. Concurrent execution with SWI-Prolog’s concurrent maplist/3

SWI-prolog offers some high-level parallel execution predicates in its library threads.pl, among
which, the concurrent _maplist predicate, taking a list of goals and running them in parallel, offers
a clear declarative semantics.

This gives us a very concise code snippet with a good speed-up over sequential execution. First,
we can use SWI-Prolog’s aggregate library to count the solutions of a goal.

sols(Goal,SolCount) : —aggregate_all(count,Goal,SolCount).

Then concur_gen/3 will create a list of Exec goals by running the generator Gen to be used as
inputs of concurrent _maplist/3 applying sols/2 to each Exec goal on the list Execs.

concur_gen(Exec,Gen,Sols) : -
findall (Exec,Gen,Execs),
concurrent_maplist(sols,Execs,AllSols),
sum_list(Al1Sols,Sols).

As in our case the length of the list generated by findall grows exponentially with the size of
the terms, at sizes 14 and 15 we expect billions and trillions of such goals.

A way to solve the intractable space requirements of concur_gen/3 is to use SWI-Prolog’s
findnsols/4 predicate, that works like £indal1/3 but backtracks over slices of length at most N, in-

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 17

stead of building the complete list of solutions on the heap. The predicate s1iced_gen/4 implements
this idea.

sliced_gen(SliceSize,Exec,Gen,TotalSols) :-

aggregate_all (sum(Sum),

(
findnsols(SliceSize,Exec,Gen,Execs),
concurrent_maplist(sols,Execs,Sols),
sum_list(Sols,Sum)

)

TotalSols).

Note that this time, the memory consumption is controlled by S1iceSize and will not grow exponen-
tially with the size of the generated terms. By defining

sliced_gen(Exec,Gen,TotalSols) : -
SliceSize is 2720,
sliced_gen(SliceSize,Exec,Gen,TotalSols).

one can manage, in exchange for a minor drop in performance to work with terms up to size 15 in less
than 4Gb of total stack space.

Still, our combinatorial generation programs, when run sequentially, can work in constant space
in Prolog by exploring their search space on backtracking. This brings us back to search for a way
to avoid building any intermediate list of solutions. Thus, we will need to design a high-level mul-
tithreading mechanism that is aware that our generator as well as the executables it produces, both
encapsulate OR-intensive, nondeterministic code. At the same time, to avoid generating billions of
suspended threads, we need to ensure that a thread-pool with an optimal number of workers is used.

7.4. Feed the birds: OR-intensive multithreading with minimal communication

We could not resist this simple analogy: one just spreads grains to a flock of birds that eagerly pick up
and consume the grains, with threads playing the role of birds and tasks the role of grains.

We will start by computing a good guess on the number of available native threads on a given
machine, assuming hyperthreading with two threads per core (roughly equivalent to 1.5 real cores)
and some other work also happening on the machine.

thread_count (ThreadCnt) : -
prolog_flag(cpu_count,MaxThreads),
ThreadCnt is max(2,ceiling((2/3)*MaxThreads)) .

Next, we design our worker, fetching tasks from the Queue associated to each thread and stopping
when there are no more tasks. To avoid a contentious global counter, the worker will increment a local
counter each time the nondeterministic Goal succeeds.

nondet_worker () : -
thread_self (Queue),
C=c_(0),
repeat,
thread_get_message (Queue,Goal),

18 Paul Tarau / Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

(Goal=’$stop’,!,arg(1,C,K),thread_exit (K)
; Goal,

ctr_inc(C),

fail

ctr_inc(C) :-arg(1,C,K) ,succ(K,SK) ,nb_setarg(1,C,SK).

Note the uses of the efficient but “impure” 2 nb_setarg/3 to maintain the state of the counter. It works
by updating (without backtracking like setarg/3 would) the value of at given argument position in a
compound term. At the end, the worker returns the total count with thread_exit/1.

To return to the bird analogy, we want to ensure that no grains are lost and all birds are happily
collecting all the grains they can eat.

The predicate nondet_gen/6 allows fine-tuning several parameters controlling the resources in-
volved. It starts by creating an optimal number of threads, all running nondet_worker/0. Then it
collects their thread identifiers and runs the nondeterministic generator ExecGen. The generated Exec
goals are placed in the message queues of each thread. Fairness is ensured by next_thread_id that
iterates, modulo the number of threads, over each thread. At the end, thread_join collects their
results returned by thread_exit/1, after waiting until all the threads terminate. Finally, the results,
representing success counts of the Goals executed by the workers are summed up.

nondet_gen(ThreadCnt ,MaxMes,StackLimit,Exec,ExecGen, Res):-
% create and start ThreadCnt worker threads
findall(Id,
(
between(1,ThreadCnt,_),
thread_create(nondet_worker(),Id, [
queue_max_size (MaxMes),
stack_limit(StackLimit)
D
),
Ids),
ThreadArray=. . [thread|Ids],
Ctr=c(1),
(call(ExecGen),
% uniformly distribute tasks
next_thread_id(MaxMes,Ctr,ThreadCnt,ThreadArray,Id),
thread_send_message(Id,Exec),
fail
; % send as many stops as threads, but AFTER the work is done
forall (member (Id,Ids),thread_send_message(Id,’$stop’))
Dg
maplist(thread_join,Ids,Rs),
maplist(arg(1),Rs,Ks), % collect results
sum_list(Ks,Res). % sum-them up

2 As we are designing here on top of a procedural multithreading AP, restricting us to side-effect free Prolog is not a realistic
ideal anymore.

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 19

The predicate next_thread_id keeps a count of each call to it and picks a thread identifier Id by
rotating over all the available threads, modulo their number. At the same time, it skips over threads
that have full message queues on which its caller would block otherwise.
next_thread_id(MaxMes,Ctr,ThreadCnt,ThreadArray,Id):-
repeat,

arg(1,Ctr,K) ,succ(X,SK),

NewK is SK mod MaxMes,

I is 1+(K mod ThreadCnt),

nb_setarg(1,Ctr,NewkK),

arg(I,ThreadArray,Id),

queue_size(Id,Size),

Size<MaxMes,
]

The heuristic behind avoiding to block on a full queue is that suspension costs are relatively high and
several workers might be ready to take on more work, while waiting on one’s full queue to unblock.

The predicate nondet_gen/3 sets some practical values for the parameters of the algorithm as
follows:

nondet_gen(Exec, ExecGen, SolCount):-

thread_count (ThreadCnt) ,

MaxMes=1000000,

prolog_flag(stack_limit,StackLimit),

nondet_gen(ThreadCnt, MaxMes, StackLimit, Exec, ExecGen, SolCount) .

The algorithm works well and computes in about a day and a half, on an 18-core iMac Pro, the number
of simply-typed lambda terms of size 15 as 2,401,456,180,621 and the number of simply typed normal
forms of size 15 as 417,818,246,574 in less than a day.

While the generator was constantly outperforming the 24 workers and needed to be contained by
limiting the size of the message queue and/or by making it skip threads with full message queues, it is
still potentially a single point of contention.

This brings us to the next step, a possible surprise to the reader, as it definitely was for us. The
question, to which we expected the usual “it is impossible!” was: Can we eliminate message queues
altogether?

7.5. Same birds, but we set them free: independent OR-parallel execution

To refine the analogy, our birds are now free to fly and pick up their grains, but they will be on their
own to find them.

This brings us to devise a mechanism that mimics the splitting of the tasks placed in each message
queue. 1f our threads would “magically” know which of the generated executable code is theirs, then
they can run the same generator and consume just their assigned executable, while ignoring the others.

Let us first define, independently of any multithreading operations, how such a customized inde-
pendent task works.

First, let’s encapsulate the state of a counter rotating modulo M on values K ranging from 0 to M-1.

rotate(Ctr,M,K) :~arg(1,Ctr,K) ,succ(K,SK) ,NewK is SK mod M,nb_setarg(l,Ctr,NewkK).

20 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

The higher-order predicate indep_task/5 will apply a generator F working on terms of size N
and producing a goal Gs to be executed locally. It maintains both the Rotor rotating counter and the
success counter Ctr incremented after each success of the nondeterministic executable goal Gs.

indep_task(F,N,M,I, Res):-

Rotor=r(0),Ctr=c(0),

(call(F,N,_,Gs),
rotate (Rotor,M,J),
I=:=J, J only execute Gs for designated value I, fail otherwise
call(Gs),
ctr_inc(Ctr),
fail

; arg(1,Ctr,Res)

).

Example 15. Count of solutions Res provided by execution of slice I=7, assuming M=24 threads and
the generator F=typed/3

?- F=typed,N=10,M=24,I=7,indep_task(F,N,M,I, Res).

F = typed,

N = 10,

M = 24,
I=7,

Res = 414871.

Thus, each of our workers runs exactly the same code centered on indep_task, except for the
selector I specific to each thread and assigned to them at creation time, and when done, returns its
result with thread exit/1.

indep_worker (F,N,M,I):-
indep_task(F,N,M,I, Res),
thread_exit (Res).

This makes the code generic and communication-free, except for the launching of each worker on
its own thread.

The predicate indep_run(F,N,ThreadCnt,Res) creates and starts the workers, collects their
thread identifiers, joins them when done, then collects their results and sums them up.

Thus, the selector I ranging from 0 to M makes each worker run exactly as if it had picked a
message from its message queue, except that it is now generating it on its own.

indep_run(F,N,ThreadCnt,Res) : -
M is ThreadCnt-1,
findall(Id,
(
between(0,M,I),
thread_create(indep_worker(F,N,M,I),Id, [])
Vg
Ids),
maplist(thread_join,Ids,Es),

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

maplist(arg(1l) ,Es,Rs),
sum_list(Rs,Res).

Finally, by specializing for the optimal thread count, we obtain.

indep_run(F,N,Res) : -
thread_count (ThreadCnt) ,
indep_run(F,N,ThreadCnt,Res) .

Example 16. Running with generator typed/3 on terms of size 10.

?7- indep_run(typed,10,SolCount).
SolCount = 9006364.

We can expose indep_run with the same interface as indep_gen.

indep_gen(Exec,Gen,SolCount) : -Gen=. . [F,N, _,Exec],indep_run(F,N,SolCount) .

21

Note that efficiency of this mechanism depends on the ratio between the effort to generate tasks
and the effort to run the tasks. As such, in the case of generation of simply typed terms and their
types, it is only slightly slower than dispatching tasks via message queues to each thread. On the other
hand, it scales easily to cluster or cloud computing infrastructures, where the cost of sending messages

between processes running on distinct computers or virtual machines would incur additional costs.

8. Performance of parallel execution

We start with a performance measuring predicate, parRun/5, that provides a uniform interface to run
and time all the combinations of Runner, providing the parallelization algorithm, and Prog, providing
the Gen and Exec pair, that, by working together, count all simply typed terms or normal forms of size

N.

parRun(N,Prog,Runner,SolCount ,Time) : -
Gen=.. [Prog,N,_,Exec],
time (call (Runner,Exec,Gen,SolCount) ,Time) .

Its interesting instances, corresponding to the four algorithms described in section 7 are:

mparRun(N,Prog,SolCount,Time) : -parRun(N,Prog,nondet_gen,SolCount,Time) .
iparRun(N,Prog,SolCount,Time) : -parRun(N,Prog, indep_gen,SolCount,Time) .
concRun(N,Prog,SolCount,Time) : -parRun(N,Prog, concur_gen,SolCount,Time) .

slicedRun(N,Prog,SolCount,Time) : -parRun(N,Prog,sliced_gen,SolCount,Time) .

We will add also seqRun/4 that exposes sequential execution under a similar interface.

seqRun (N,Prog,SolCount,Time) : -
Gen=.. [Prog,N,_,Exec],
time (sols((Gen,Exec),SolCount) ,Time) .

22 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

Size | seqRun-typed | mparRun-typed | Speed-up
6 0.002 0.008 0.25

7 0.013 0.014 0.929

8 0.097 0.06 1.617

9 0.809 0.291 2.78

10 7.481 1.432 5.224

11 76.079 7.428 10.242
12 851.149 83.138 10.238

Figure 4. Timings (in seconds) for sequential vs. parallel generation of simply typed lambda terms on a Xeon
W 18-core iMacPro

Size | seqRun-tnf | mparRun-tnf | Speed-up
6 0 0.003 0

7 0.004 0.006 0.667

8 0.028 0.018 1.556

9 0.206 0.067 3.075

10 1.7 0.295 5.763

11 15.3 1.42 10.775
12 154.584 13.541 11.416

Figure 5. Timings for sequential vs. parallel simply typed normal forms generation

We will proceed by first comparing our best-performing parallel program against its sequential
equivalent and then the parallel algorithms among them.

Figure 4 shows a speed-up of mparRun over seqRun that stabilizes around a factor of 10 on an 18-
core iMacPro using a total of 26 threads among which 24 are working on tasks, one thread feeding their
message queues and one thread being SWI-Prolog’s concurrent garbage collection thread. That keeps
the machine at around 69% total CPU dedicated to our program. We have observed that adding more
threads results in minor performance changes, mostly because the two threads on each hyperthreading
core are known to be equivalent to around 1.5 threads running each on its own core.

Figure 5 shows the same comparison applied this time to the generation of simply typed normal
forms.

Figure 6 compares iparRun, with threads working on independent tasks, without using any mes-
sage queues with our best-performing mparRun predicate. Note that performance variations are minor,
making the more memory-thrifty iParRun a valid alternative, given also that it can spread its work on
a cluster or cloud infrastructure without involving communication costs at each step.

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

Size | iparRun-typed | mparRun-typed | Speed-up
6 0.002 0.004 0.5

7 0.006 0.014 0.429

8 0.031 0.061 0.508

9 0.174 0.297 0.586

10 1.111 1.442 0.77

11 9.169 7.694 1.192

12 89.84 86.385 1.04

Figure 6. Timings for two parallel algorithms for generation of simply typed lambda terms

Size | concRun-typed-16Gb | mparRun-typed | Speed-up
6 0.019 0.006 3.167
7 0.046 0.014 3.286
8 0.2 0.061 3.279
9 1.085 0.291 3.729
10 5.351 1.432 3.737
11 28.87 7.394 3.905
12 164.031 82.153 1.997

Figure 7. Timings for two parallel algorithms for generation of simply typed lambda terms

23

Figure 7 compares the slower and more memory intensive concRun with mparRun. Note that we
had to lift SWI-Prolog’s stack_limit to 16GB to accommodate its exponentially growing memory

needs.

Finally, Figure 8 compares the slightly slower slicedRun which avoids the memory explosion

problem of concRun.

Our longest test was the counting of simply typed normal forms of size 16, that took 3.27 days to

complete.

As at this size we only wanted to count the terms, given the expected trillions of them, we derived
the predicate inh nf from tnf, by removing the actual lambda term arguments, a technique outlined

for sequential execution in subsection 4.3 and giving in the sequential case a 40%-50% speed-up.

inh_nf(N,T,Gs):-n2s(N,S),inh_nf (T, [],S,0,Gs,true).

inh_nf(P,Ps,N1,N2)-->inh_nf_no_left_lambda(P,Ps,N1,N2).
inh_nf ((P->Q),Ps,s(N1),N2)-->inh_nf(Q, [P|Ps],N1,N2).

24 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

Size | slicedRun-typed-4Gb | mparRun-typed | Speed-up
6 0.014 0.005 2.8

7 0.042 0.013 3.231

8 0.197 0.061 3.23

9 1.075 0.302 3.56

10 5.428 1.432 3.791

11 30.684 7.456 4.115

12 169.755 82.958 2.046

Figure 8. Timings for two parallel algorithms for generation of simply typed lambda terms

inh_nf_no_left_lambda(P, [Q|Ps],N,N) --> add_hypo_type(P, [QIPs]).
inh_nf_no_left_lambda(Q,Ps,s(N1),N3) -—>
inh_nf_no_left_lambda((P->Q),Ps,N1,N2),
inh_nf (P,Ps,N2,N3).

We have derived the auxiliary predicates add_hypo_type and hypo_type by also trimming the first
arguments of add_hypo and hypo.

add_hypo_type(P,Ps, (hypo_type(P,Ps),Gs) ,Gs).

hypo_type (P,Ps) : -member (Q,Ps) ,unify_with_occurs_check(P,Q) .

We used the nondet_gen generator and allowed message queue sizes of up to a million, resulting
in a maximum memory footprint of 12GB.

Example 17. Computing the number of simply typed normal forms of size 16.

?- parRun(16,inh_nf,nondet_gen,SolCount,TimeInSecs) .
SolCount = 5,612,087,926,963,
TimeInSecs = 282768.107.

As an indication of how robust its multi-threading subsystem is, at the end of the test, SWI-Prolog shut
down all worker threads and trimmed back its memory footprint to the usual few megabytes default.

We were surprised, by running statistics/0 at the end, to notice that a nominal 24x speed-up
has been achieved, as the 24 finished threads used 6570418.889 seconds and 6848345.203 /282768.107 =
24.218944900317204. While some of the total time of the threads was spent on managing their mes-
sage queues and task switching, this indicates that the Xeon W 18 core CPU has been used very close
to its maximum capacity.

9. Discussion

The parallel execution mechanisms that we have derived for these problems are generic, in the follow-
ing sense:

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 25

1. they apply to any combinatorial generation problem, where one can split the generation mech-
anism into two layers, where the second is an executor of nondeterministic code generated by
the first, which is also a nondeterministic generator

2. benefits are maximized when the instances of second layer are computationally intensive and
are run on separate threads

3. if one wants to just count the number of answers produced by a combinatorial generator, inter-
thread communication can be drastically reduced, by allocating to each computation in the
second layer its own slice, filtered from an integrated first layer generator, provided that re-
executing it on each thread is inexpensive.

An interesting open problem is if these performance improvements can be pushed significantly
farther. We have looked into term_hash based indexing and tabling-based dynamic programming
algorithms, using de Bruijn terms. Unfortunately, as subterms of closed terms are not necessarily
closed, even if de Bruijn terms can be used as ground keys, their associated types are incomplete
and dependent on the context in which they are inferred. As future work we plan to explore the
possibility of relying on the type discipline in [27] that hints on how to deal with type environments
for de Bruijn indices, where the interaction between the weakening rule and the rules for lambda
abstractions determine the type of a de Bruijn index or the closure calculus of [28] that combines de
Bruijn indices with de Bruijn levels, such that the latter remain independent from the context within
the closure’s environment.

We have not seen any obvious way to improve these results using constraint programing systems,
partly because the key “inner loop” operation is unification with occurs check, with computations
ranging over Prolog terms rather than over objects of a finite constraint domain. On the other hand,
for a given size, grounding to propositional formulas for SAT-solvers or Answer-Set Programming
systems seem worth exploring. The main problem faced there is that of expressing unification with
occurs check in terms of a propositional encoding, under the assumption that sizes of both terms and
type-expressions are bounded.

We have not discussed here the use of similar techniques to improve the Boltzmann samplers de-
scribed to [29], but clearly interleaving type checking with the probability-driven building of the terms
would improve their performance, by excluding terms with ill-typed subterms as early as possible, dur-
ing the large number of retries needed to overcome the asymptotically O-density of simply-typed terms
in the set of closed terms [9].

Several concepts of size have been used in the literature, for reasons ranging from simplifying
evaluation procedures [30] to matching the structure of the terms naturally occurring in actual pro-
grams [31]. As a byproduct, some size definitions also result in better convergence conditions of
formal series in analytic combinatorics [32]. Our techniques can be easily adapted to a different size
definition like the ones in [31, 32] where variables in de Bruijn notation have a size proportional to the
distance to their binder.

Interestingly, if one wants to match as closely as possible the intuition that in actual programs
most lambdas will bind more than one variable, the cost of lambda constructors should be higher than
that of application nodes, which correlate n to n+ 1 with the number of available leaves. The size
definition used in this paper, with equal cost for applications and lambdas comes close to that as it

26 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

ensures at least a one-to-one ratio between lambda nodes and the leaf variables they might bind. On
the other hand, definitions adding extra weight to variables or applications are likely to generate less
interesting terms of a given size by implicitly devaluating the lambda binders.

Our generic parallel execution algorithms assume a split of a given combinatorial generation or
search program into a code generator, to be run sequentially and a second stage execution of the
generated code on multiple threads. While this is an “eureka” step that requires some intuition on the
most effective way to decompose such algorithms, it is facilitated by the compositional nature of these
algorithms, that can be seen as successive refinements of simpler generators with additional layers of
“decorations” driven by independent combinatorial mechanisms.

Note also that while we have specialized our generators to produce only solution counts, a simple
change would be to make them collect the actual solutions and then return the with thread_exit.

10. Related work

The classic reference for lambda calculus is [2]. Various instances of typed lambda calculi are
overviewed in [4].

The combinatorics and asymptotic behavior of various classes of lambda terms are extensively
studied in [8, 11]. Distribution and density properties of random lambda terms are described in [9].

Generation of random simply-typed lambda terms and its applications to generating functional
programs from type definitions is covered in [33].

Asymptotic density properties of simple types (corresponding to tautologies in implicational frag-
ment of intuitionistic propositional logic) have been studied in [34] with the surprising result that
“almost all” classical tautologies are also intuitionistic ones.

In [7] a “type-directed” mechanism for the generation of random terms is introduced, resulting
in more realistic (while not uniformly random) terms, used successfully in discovering some bugs in
the Glasgow Haskell Compiler (GHC). A statistical exploration of the structure of the simple types
of lambda terms of a given size in [17] gives indications that some types frequent in human-written
programs are among the most frequently inferred ones.

Generators for closed simply-typed lambda terms, as well as their normal forms, expressed as
functional programming algorithms, are given in [8], derived from combinatorial recurrences. How-
ever, they are significantly more complex than the ones described here in Prolog, and limited to terms
up to size 10.

In the unpublished draft [18] we have collected several lambda term generation algorithms written
in Prolog and covering mostly de Bruijn terms and a compressed de Bruijn representation. Among
them, we have covered linear, affine linear terms as well as terms of bounded unary height and in
binary lambda calculus encoding. In [18] type inference algorithms are also given for SK and Rosser’s
X-combinator expressions. A similar (but slower) program for type inference using de Bruijn notation
is also given in [18], without however describing the step-by-step derivation steps leading to it, as
done in this paper.

Parallel algorithms for generating random simply typed lambda terms and normal forms are given
in [35], but working with a different concept of size, amenable to the use of analytic methods and

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 27

Boltzmann samplers. The key difference with the parallel algorithms described here is that the algo-
rithms described here cover exhaustive generation of terms of a given size, a much harder problem
than the filtering from typability of closed lambda terms provided by a Boltzmann sampler.

Typability of special families of lambda terms are investigated in [36] and [37], suggesting other
possible splittings of combinatorial generation algorithms into generator/executable pairs, with poten-
tial uses for parallelization as instances of the algorithms described in this paper.

In [38] a general constraint logic programming framework is defined for size-constrained gener-
ation of data structures as well as a program-transformation mechanism. While our fine-tuned inter-
leaving of term generation and type inference directly provides the benefits of a CLP-based scheme,
the program transformation techniques described in [38] are worth exploring for possible performance
improvements. In [39] a general Haskell-based framework for generating enumerable structures is in-
troduced. While clearly useful for arbitrary free structures, the fine-grained interleaving of generation
and type inference of this paper do not seem to be embeddable in it with similar performance gains.

11. Conclusion

In [1], that this paper extends, we have derived several logic programs that have helped solve the
fairly hard combinatorial counting and generation problem for simply-typed lambda terms, 4 orders
of magnitude higher than previously published results. The parallel algorithms given in this paper add
one order of magnitude to the generation of simply typed lambda terms and two orders of magnitudes
to the generation of simply typed normal forms.

Our sequential execution algorithms have put at test two simple but effective program transfor-
mation techniques naturally available in logic programming languages: 1) interleaving generators and
testers by integrating them in the same predicate and 2) dropping arguments used in generators when
used only as counters of solutions, as in this case their role can be kept implicit in the recursive
structure of the program. Both have turned out to be effective for speeding up computations without
changing the semantics of their intended application. For our sequential programs, we have also man-
aged (after a simple DCG translation) to work within in the minimalist framework of Horn Clauses
with sound unification, showing that non-trivial combinatorics problems can be handled without any
of Prolog’s impure features.

With the extra speed-up brought by our parallel algorithms, two of the integer sequences in [13]
can be further extended. Sequence A2204713, counting the number of simply typed lambda terms of
size N [8] has 2,401,456,180,621 terms of size 15 and A289681%, counting the set of simply typed
normal forms of size N [1] has 417,818,246,574 terms of size 15 and 5,612,087,926,963 terms of size
16.

Our parallel execution algorithms, have been designed to be generic. Beyond their instantiations
for generating simply typed lambda terms and normal forms, they are likely to be reusable for a several
similar combinatorial generation or search problems.

An interesting application, we have started to work on, is the use of simply typed normal forms,
via the Curry-Howard correspondence [5, 6], as known-to-be-provable formulas of implicational in-

3https://oeis.org/A220471
‘https://oeis.org/A289681

28 Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

tuitionistic propositional calculus. As such, they provide a very large supply of positive examples
allowing automated testing of the soundness of intuitionistic theorem provers [40].

Our techniques, combining unification of logic variables with Prolog’s backtracking mechanism
and DCG grammar notation, recommend logic programming as a convenient meta-language for the
manipulation of various families of lambda terms and the study of their combinatorial and computa-
tional properties.

Acknowledgement

This research has been supported by NSF grant 1423324. We thank the anonymous reviewers of
LOPSTR’16 and Fundamenta Informaticae for their constructive suggestions and the participants of
the 9th Workshop Computational Logic and Applications (https://cla.tcs.uj.edu.pl/) for en-
lightening discussions and for sharing various techniques clarifying the challenges one faces when
having a fresh look at the emerging, interdisciplinary field of the combinatorics of lambda terms and
their applications.

References

[1] Tarau P. A Hiking Trip Through the Orders of Magnitude: Deriving Efficient Generators for Closed
Simply-Typed Lambda Terms and Normal Forms. In: Hermenegildo MV, Lopez-Garcia P (eds.), Logic-
Based Program Synthesis and Transformation: 26th International Symposium, LOPSTR 2016, Edinburgh,
UK, Revised Selected Papers. Springer LNCS, volume 10184. ISBN 978-3-319-63139-4, 2017 pp. 240-
255. doi:10.1007/978-3-319-63139-4\ _14. , Best paper award.

[2] Barendregt HP. The Lambda Calculus Its Syntax and Semantics, volume 103. North Holland, revised
edition, 1984.

[3] Hindley JR, Seldin JP. Lambda-calculus and combinators: an introduction, volume 13. Cambridge Uni-
versity Press Cambridge, 2008.

[4] Barendregt HP. Lambda Calculi with Types. In: Handbook of Logic in Computer Science, volume 2.
Oxford University Press, 1991.

[5] Howard W. The Formulae-as-types Notion of Construction. In: Seldin J, Hindley J (eds.), To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479-490. Academic Press, London,
1980.

[6] Wadler P. Propositions as types. Commun. ACM, 2015. 58:75-84.

[7] Palka MH, Claessen K, Russo A, Hughes J. Testing an Optimising Compiler by Generating Random
Lambda Terms. In: Proceedings of the 6th International Workshop on Automation of Software Test,
AST’11. ACM, New York, NY, USA, 2011 pp. 91-97.

[8] Grygiel K, Lescanne P. Counting and generating lambda terms. J. Funct. Program., 2013. 23(5):594-628.

[9] David R, Raffalli C, Theyssier G, Grygiel K, Kozik J, Zaionc M. Some properties of random lambda
terms. Logical Methods in Computer Science, 2009. 9(1).

[10] Bodini O, Gardy D, Gittenberger B. Lambda-terms of Bounded Unary Height. In: ANALCO. SIAM,
2011 pp. 23-32.

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 29

David R, Grygiel K, Kozik J, Raffalli C, Theyssier G, Zaionc M. Asymptotically almost all A-terms are
strongly normalizing. Preprint: arXiv: math. LO/0903.5505 v3, 2010.

Flajolet P, Sedgewick R. Analytic Combinatorics. Cambridge University Press, New York, NY, USA, 1
edition, 2009. ISBN 0521898064, 9780521898065.

Sloane NJA. The On-Line Encyclopedia of Integer Sequences. 2020. Published electronically at
https://oeis.org/.

Tarau P. On Logic Programming Representations of Lambda Terms: de Bruijn Indices, Compression, Type
Inference, Combinatorial Generation, Normalization. In: Pontelli E, Son TC (eds.), Proceedings of the
Seventeenth International Symposium on Practical Aspects of Declarative Languages PADL’15. Springer,
LNCS 8131, Portland, Oregon, USA, 2015 pp. 115-131.

Tarau P. Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices. In: Kerber M, Carette
J, Kaliszyk C, Rabe F, Sorge V (eds.), Proceedings of the 8th Conference on Intelligent Computer Mathe-
matics. Springer, LNAI 9150, Washington, D.C., USA, 2015 pp. 118-133.

Tarau P. On a Uniform Representation of Combinators, Arithmetic, Lambda Terms and Types. In: Albert
E (ed.), PPDP’15: Proceedings of the 17th international ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming. ACM, New York, NY, USA, 2015 pp. 244-255.

Tarau P. On Type-directed Generation of Lambda Terms. In: De Vos M, Eiter T, Lierler Y, Toni F (eds.),
31st International Conference on Logic Programming (ICLP 2015), Technical Communications. CEUR,
Cork, Ireland, 2015 Available online at http://ceur-ws.org/Vol-1433/.

Tarau P. A Logic Programming Playground for Lambda Terms, Combinators, Types and Tree-based
Arithmetic Computations. CoRR, 2015. abs/1507.06944. URL http://arxiv.org/abs/1507.06944.

Stanley RP. Enumerative Combinatorics. Wadsworth Publ. Co., Belmont, CA, USA, 1986. ISBN 0-534-
06546-5.

Statman R. Intuitionistic Propositional Logic is Polynomial-Space Complete. Theor. Comput. Sci., 1979.
9:67-72. doi:10.1016/0304-3975(79)90006-9.

Wielemaker J, Schrijvers T, Triska M, Lager T. SWI-Prolog. Theory and Practice of Logic Programming,
2012. 12:67-96. doi:10.1017/S1471068411000494.

Costa VS, Rocha R, Damas L. The YAP Prolog system. Theory and Practice of Logic Programming,
2012. 12:5-34. doi:10.1017/S1471068411000512.

Tarau P. An Efficient Specialization of the WAM for Continuation Passing Binary Programs. In: Proceed-
ings of the 1993 ILPS Conference. MIT Press, Vancouver, Canada, 1993 Poster.

Tarau P, Demoen B. Higher-Order Programming in an OR-intensive Style. In: Hermenegildo M, Lopez
P (eds.), Proceedings of the 1995 COMPULOG-NET Workshop and Area Meeting on Parallelism and
Implementation Technology. 1995 .

Gupta G, Pontelli E, Ali KAM, Carlsson M, Hermenegildo MV. Parallel execution of prolog programs:
a survey. ACM Trans. Program. Lang. Syst., 2001. 23(4):472-602. doi:10.1145/504083.504085. URL
https://doi.org/10.1145/504083.504085.

Wielemaker J. Native Preemptive Threads in SWI-Prolog. In: Palamidessi C (ed.), Practical Aspects of
Declarative Languages. Springer Verlag, Berlin, Germany, 2003 pp. 331-345. LNCS 2916.

30

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms

Kiselyov O. A to SKI, Semantically - Declarative Pearl. In: Functional and Logic Programming - 14th
International Symposium, FLOPS 2018, Nagoya, Japan, May 9-11, 2018, Proceedings, volume 10818 of
Lecture Notes in Computer Science. 2018 pp. 33-50.

Garcia-Pérez A, N ogueira P. The full-reducing Krivine abstract machine KN simulates pure normal-order
reduction in lockstep: A proof via corresponding calculus. J. Funct. Program., 2019. 29:e7.

Lescanne P. Boltzmann samplers for random generation of lambda terms. CoRR, 2014. abs/1404.3875.
URL http://arxiv.org/abs/1404.3875.

Tromp J. Binary Lambda Calculus and Combinatory Logic, 2018. Published electronically at
https://tromp.github.io/cl/LC.pdf.

Grygiel K, Lescanne P. Counting and generating terms in the binary lambda calculus. J. Funct.
Program., 2015. 25. doi:10.1017/S0956796815000271. URL http://dx.doi.org/10.1017/
S0956796815000271.

Bendkowski M, Grygiel K, Lescanne P, Zaionc M. A Natural Counting of Lambda Terms. In: Freivalds
RM, Engels G, Catania B (eds.), SOFSEM 2016: Theory and Practice of Computer Science - 42nd
International Conference on Current Trends in Theory and Practice of Computer Science, Harrachov,
Czech Republic, January 23-28, 2016, Proceedings, volume 9587 of Lecture Notes in Computer Sci-
ence. Springer. ISBN 978-3-662-49191-1, 2016 pp. 183-194. doi:10.1007/978-3-662-49192-8_15. URL
http://dx.doi.org/10.1007/978-3-662-49192-8_15.

Fetscher B, Claessen K, Palka MH, Hughes J, Findler RB. Making Random Judgments: Automatically
Generating Well-Typed Terms from the Definition of a Type-System. In: Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings. 2015 pp. 383-405.

Genitrini A, Kozik J, Zaionc M. Intuitionistic vs. Classical Tautologies, Quantitative Comparison.
In: Miculan M, Scagnetto I, Honsell F (eds.), Types for Proofs and Programs, International Confer-
ence, TYPES 2007, Cividale del Friuli, Italy, May 2-5, 2007, Revised Selected Papers, volume 4941
of Lecture Notes in Computer Science. Springer. ISBN 978-3-540-68084-0, 2007 pp. 100-109. doi:
10.1007/978-3-540-68103-8\ _7.

Bendkowski M, Grygiel K, Tarau P. Random generation of closed simply typed A-terms: A synergy
between logic programming and Boltzmann samplers. TPLP, 2018. 18(1):97-119. URL https://doi.
org/10.1017/5147106841700045X.

Bodini O, Tarau P. On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms. In: Fiora-
vanti F, Gallagher JP (eds.), Logic-Based Program Synthesis and Transformation, LNCS 10855. Springer
International Publishing. ISBN 978-3-319-94460-9, 2018 pp. 252-268.

Tarau P. On k-colored Lambda Terms and their Skeletons. In: Calimeri F, Hamlen KW, Leone N (eds.),
Practical Aspects of Declarative Languages - 20th International Symposium, PADL 2018, Los Angeles,
CA, USA, January 8-9, 2018, Proceedings, volume 10702 of Lecture Notes in Computer Science. Springer.
ISBN 978-3-319-73304-3, 2018 pp. 116-131. doi:10.1007/978-3-319-73305-0\ _8.

Fioravanti F, Proietti M, Senni V. Efficient generation of test data structures using constraint logic pro-
gramming and program transformation. Journal of Logic and Computation, 2015. 25(6):1263-1283.
doi:10.1093/logcom/ext071.

(39]

(40]

Paul Tarau | Efficient Sequential and Parallel Generators for Simply-Typed Lambda Terms and Normal Forms 31

Kuraj I, Kuncak V, Jackson D. Programming with Enumerable Sets of Structures. In: Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015. ACM, New York, NY, USA. ISBN 978-1-4503-3689-5, 2015 pp. 37—
56. doi:10.1145/2814270.2814323. URL http://doi.acm.org/10.1145/2814270.2814323.

Tarau P. A Combinatorial Testing Framework for Intuitionistic Propositional Theorem Provers. In: Alferes
JJ, Johansson M (eds.), Practical Aspects of Declarative Languages - 21th International Symposium,
PADL 2019, Lisbon, Portugal, January 14-15, 2019, Proceedings, volume 11372 of Lecture Notes in Com-
puter Science. Springer. ISBN 978-3-030-05997-2, 2019 pp. 115-132. doi:10.1007/978-3-030-05998-9\
8.

