Training Neural Networks to Do Logic, with Logic

Paul Tarau

joint work with Valeria de Paiva

February 22, 2021
Overview

THE PROBLEM:
- can we train neural networks to work as close-to-perfect theorem provers on an interesting logic?

OUR SOLUTION:
- we focus on a simple enough, but interesting logic: Implicational Propositional Intuitionistic Linear Logic (IPILL from now on)
- we need to derive an efficient algorithm requiring a low polynomial effort per generated theorem and its proof term
- we rely on the Curry-Howard isomorphism ⇒ we can focus on generating simply typed linear lambda terms in normal form

THE OUTCOMES:
- an implicational intuitionistic logic prover specialized to IPILL formulas
- a dataset for training neural networks
- very high success rate with seq2seq LSTM neural networks
- an open problem: can these techniques extend to harder, syntactically and semantically richer logics?
The Tools Used

- we have designed a **combinatorial generation framework for several formula languages:**
 - exhaustive generators for terms up to a given size
 - random term generators
 - families of lambda terms (including linear lambda terms)
 - type inference algorithms
 - generators of lambda terms constrained by typability
 - theorem provers for IPC
- we have chosen Prolog as our meta-language, because:
 - it reduces the semantic gap (derived from essentially the same formalisms as those we are covering)
 - has the right language constructs for a concise and efficient declarative implementation
- the Prolog code is available at:
 https://github.com/ptarau/TypesAndProofs.
while propositional intuitionistic linear logic is already Turing complete, its *implicational fragment* is decidable.

moreover, via the Curry-Howard isomorphism, we can design (polynomial) algorithms for generating its theorems and their proofs.

dual uses of theorems and their proofs (expressed as linear lambda terms):

- as *test sets*, combining tautologies and their proof terms helps with testing correctness and scalability of linear logic theorem provers
- as *datasets*, they can be used for training deep learning networks focusing on *neuro-symbolic* computations.
The Curry Howard Isomorphism

- a correspondence between computations and proofs: the Curry-Howard isomorphism
 - in its simplest form, it connects the implicational fragment of propositional intuitionistic logic IIPC with types in the simply typed lambda calculus
 - a low polynomial type inference algorithm associates a type (when it exists) to a lambda term
 - harder, (PSPACE-complete) algorithms associate inhabitants to a given type expression with the resulting lambda term (typically in normal form) serving as a witness for the existence of a proof for the corresponding tautology in implicational propositional intuitionistic logic
 - \(\Rightarrow \) can we use combinatorial generation of lambda terms + type inference (easy) to “solve” some type inhabitation problems (hard)?
Formulas depicted as trees, together with their proof terms

Formula: \(\lambda X.\lambda Y.(Y \ X) \)

Formula: \(\lambda X.X \)

Paul Tarau
joint work with Valeria de Paiva
Training NNs to Do Logic, with Logic
February 22, 2021
Deriving the formula generators (see ICLP’20 paper)

1. **IPILL** formulas (fairly simple Prolog code), built as:
 - binary trees of size N, counted by Catalan numbers $\text{Catalan}(N)$
 - labeled with variables derived from set partitions counted by $\text{Bell}(N+1)$ (see A289679 in OEIS)

2. linear lambda terms (proof terms for the **IPILL** formulas)
 - linear skeleton Motzkin trees (binary-unary trees with constraints enforcing one-to-one mapping from variables to their lambda binders)

3. *closed* linear lambda terms

4. closed linear lambda terms in normal form

5. after a chain of refinements, we derive a compact and efficient generator for *pairs of Linear Lambda Terms in Normal Form* and their types (which always exist as they are all typable!) see next slide!

6. it generates in a few hours $7,566,084,686$ terms together with their corresponding types, seen as theorems in **IPILL** via the Curry-Howard isomorphism (A062980 sequence in OEIS)
linear_typed_normal_form(N,E,T) :- succ(N,N1),
 linear_typed_normal_form(E,T,N,0,N1,0,[]).

linear_typed_normal_form(l(X,E),(S '−o' T),A1,A2,L1,L3,Vs) :-
 pred(L1,L2), % defined as L1>0,L2 is L1−1
 linear_typed_normal_form(E,T,A1,A2,L2,L3,[V:S|Vs]),
 check_binding(V,X).
linear_typed_normal_form(E,T,A1,A2,L1,L3,Vs) :-
 linear_neutral_term(E,T,A1,A2,L1,L3,Vs).

linear_neutral_term(X,T,A,A,L,L,Vs) :-
 member(V:TT,Vs), bind_once(V,X), T=TT.
linear_neutral_term(a(E,F),T,A1,A4,L1,L3,Vs) :- pred(A1,A2),
 linear_neutral_term(E,(S '−o' T),A2,A3,L1,L2,Vs),
 linear_typed_normal_form(F,S,A3,A4,L2,L3,Vs).

bind_once(V,X) :- var(V), V=v(X).
check_binding(V,X) :- nonvar(V), V=v(X).
A Normal Form and its Corresponding Linear Type (I).

term: $\lambda X. \lambda Y. (Y \ X)$

its linear type: $\star o$

Note that all linear lambda terms are typable!

Paul Tarau joint work with Valeria de Paiva
Training NNs to Do Logic, with Logic February 22, 2021 9 / 31
A Normal Form and its Corresponding Linear Type (II).

\[\lambda X.(((X \lambda Y.Y) \lambda Z.Z) \lambda U.U) \]

Note the symmetries between linear terms and their types!
it looks like we see some interesting symmetries in the pictures!
- there are exactly two occurrences of each variable both in the theorems and their proof terms of which they are the principal types
- theorems and their proof terms have the same size, counted as number of internal nodes

thus, we can solve the problem of generating all IPILL tautologies size N

IF

the predicate linear_typed_normal_form implements a generator of their proof-terms of size N
The GOOD NEWS: there’s a size-preserving bijection between linear lambda terms in normal form and their principal types!

a proof follows immediately from a paper by Noam Zeilberger who attributes this observation to Grigori Mints

⇒ we have obtained a generator for all theorems of implicaional linear intuitionistic propositional logic of a given size, as measured by the number of lollipops, without having to prove theorems!

this is a “Goldilocks” situation that points out the very special case that implicaional formulas have in linear logic and equivalently, linear types have in type theory!
The Datasets

- the dataset containing generated theorems and their proof-terms in prefix form (as well as their LaTeX tree representations marked as Prolog “%” comments) is available at http://www.cse.unt.edu/~tarau/datasets/lltaut/
- it can be used for correctness, performance and scalability testing of linear logic theorem provers
- the `<formula, proof-term>` pairs in the dataset are usable to test deep-learning systems on theorem proving tasks
- also, formulas with non-theorems added for IPILL
prefix encoding: lollipop=0, application=0, lambda=1, variables as uppercase letters, “:” as separator between formulas and proof terms

- Provable formulas with their proof terms (for IPILL)

 0AA:1AA
 0A00ABB:1A1B0BA
 00AB0AB:1A1B0AB
 0A00AB00BCC:1A1B1C0C0BA
 00000AAB00C0BD0CD00EEFF:1A00A1B1C1D00CD0B1EE1FF

- Provable formulas with their proof terms and “?” if proof failed

 0A0B0000A0C0B0DE0C0DEFF:1A1B1C0C1D1E1F0000DAEBF
 0A0B0000A0C0B0DE0C0DFGH:?
 0A0B0000A0B0C0DE0D0CEFF:1A1B1C0C1D1E1F0000DABFE
 0A0B0000A0B0C0DE0D0CFGG:?

- similar formulas for IPC, also on normal forms in prefix form
more generally, we search for good frameworks for **neuro-symbolic computing**

- theorem provers are computation-intensive search algorithms
- Turing-complete (e.g., PLL, FOL), PSPACE-complete (e.g., IPC)

there are two ways neural networks can help:

- fine-tuning the search, by helping with the right choice at choice points
- used via an interface to solve low-level “perception”-intensive tasks
 - e.g., working on learnable ground facts labeled with probabilities – DeepProbLog
 - also, via an interface to a ground term Prolog database: (see https://github.com/ptarau/pypro)

is there a third way: can they simply replace the symbolic theorem prover given a large enough training dataset?
the key ML concepts to watch for:
- “honesty”: split the dataset into: training, validation and (independent) test sets
- things to avoid:
 - overfitting (works on training, fails on validation and testing data)
 - unlikely to work well on random (high Kolmogorov complexity) data

the key NN general concepts to watch for:
- NNs are *trainable universal approximators* for a given function
 \[L_{t+1} = \sigma(A \ast L_t + b) \]
 where \(L_t \) is a layer at step \(t \), \(A \) is a matrix containing trainable parameters, \(b \) is a bias vector and \(\sigma \) is a non-linear function (logistic sigmoid, tanh, RELU\((x) = \max(0, x)\), etc.)
- differentiable functions, gradients computed on backpropagation
- an intuition behind why deep NNs are needed: each layer abstracts away statistically relevant patterns that are fed to the next layer
- often, to ensure generalization, information is deliberately lost
formulas/types and proofs/lambda terms are both trees
⇒ we can represent them as prefix strings
⇒ for IPILL we can even find a size definition to give the same size on both sides:
 - for lambda terms: leaves=0, lambda nodes=1, applications=1
 - for $\neg\circ$ formulas: leaves=0, lollipops = 1
what type of neural networks to use?
- with trees as prefix string: ⇒ “seq2seq” recurrent NNs
- LSTM (long short term memory) NNs : good to handle long distance dependencies in the prefix forms
seq2seq Neural Networks

- sequence as input, train to guess sequence as output
- used originally for translation of natural languages, with training on large parallel corpora
- notable variants: *transformers*, trained to predict masked words in a sentence as well as predict next sentence in a text
- *unsupervised* - just feeding them very large text data
- examples: BERT, GPT-3 - impressive performance on several NLP tasks (e.g., GPT-3 generating fake news)
- newer variants, possibly more in interesting: *tree2tree, dag2dag* and several types of *graph neural networks* (e.g., convolutional, attention, spectral, torch geometric)
LSTM seq2seq Neural Networks

- recurrent neural networks keep track of dependencies within sequences
- feedback from values at time t is fed into computations at time $t + 1$
- long short-term memory (LSTM) is a recurrent neural network (RNN) architecture
- it can not only process single data points (such as images), but also entire sequences of data (such as text, speech or video)
- LSTM NNs have feedback connections \Rightarrow LSTM avoids vanishing or exploding gradient problems by also feeding *unchanged* values to the next layer
in fact, our seq2seq LSTM recurrent neural network trained on encodings of theorems and their proof-terms performs unusually well

the experiments with training the neural networks using the IPILL and IIPC theorem dataset are available at: https://github.com/ptarau/neuralgs

the \(<\text{formula},\ \text{proof term}\>\) generators are available at: https://github.com/ptarau/TypesAndProofs

the generated datasets are available at: http://www.cse.unt.edu/~tarau/datasets/
Figure: Accuracy curve for 100 epochs
Loss curve of the LSTM seq2seq neural network on our formula/proof term dataset for **IPILL**

![Loss curve for 100 epochs](image)

Figure: Loss curve for 100 epochs
Figure: Accuracy curve for 100 epochs
Loss for **IPILL** + unprovable formulas

Figure: Loss curve for 100 epochs
Can we train Neural Network as Provers for a PSPACE-complete Logic?
The **LJT/G4ip** calculus (implicational fragment)

Roy Dyckhoff’s rules for the **G4ip** (originally called the **LJT**)

\[\begin{align*}
LJT_1 : & \quad A, \Gamma \vdash A \\
LJT_2 : & \quad A, \Gamma \vdash B \\
& \quad \Gamma \vdash A \rightarrow B \\
LJT_3 : & \quad B, A, \Gamma \vdash G \\
& \quad A \rightarrow B, A, \Gamma \vdash G \\
LJT_4 : & \quad D \rightarrow B, \Gamma \vdash C \rightarrow D \\
& \quad B, \Gamma \vdash G \\
& \quad \left(C \rightarrow D \right) \rightarrow B, \Gamma \vdash G \\
LJT_5 : & \quad false, \Gamma \vdash G
\end{align*} \]

the last rule supports intuitionistic negation
A Lightweight Theorem Prover for Full Intuitionistic Propositional Logic

the LJT/G4ip sequent calculus for the full IPC + rules for “<->”:

ljfa(T) :- ljfa(T, []).

ljfa(A, Vs) :- memberchk(A, Vs), !.

ljfa(_, Vs) :- memberchk(false, Vs), !.

ljfa(A<->B, Vs) :- !, ljfa(B, [A|Vs]), ljfa(A, [B|Vs]).

ljfa((A->B), Vs) :- !, ljfa(B, [A|Vs]).

ljfa(A & B, Vs) :- !, ljfa(A, Vs), ljfa(B, Vs).

ljfa(G, Vs1) :- % atomic or disj or false
 select(Red, Vs1, Vs2),
 ljfa_reduce(Red, G, Vs2, Vs3),
 !,
 ljfa(G, Vs3).

ljfa(A v B, Vs) :- (ljfa(A, Vs); ljfa(B, Vs)), !.
Being derived from a sound and complete calculus, our prover is sound and complete. Also, it is safe from stack and heap overflows. We can use it as an oracle for validating the output of a neural network on larger, unknown formulas.

However, as we can generate such formulas up to size N directly, and then infer their types, we can validate the results on the dataset itself, split into training, validation and test sets.
Figure: Accuracy curve for 100 epochs
Loss for IIPC

Figure: Loss curve for 100 epochs
Conclusions

- we have used a Logic Programming Language (Prolog) to derive a generator for all **IPILL** and **IIPC** theorems of a given size, without needing a theorem prover by combining a generator for their proof terms and a type inference algorithm.

- we have sketched their use as a dataset for training neural networks, turning them into reliable theorem provers, for the **harder inverse problem**: given a formula in **IPILL**, or **IIPC**, find a proof term for it!

- open problems, future work:
 - can this be extended to full fragments of IPC or LL?
 - would the same success rate apply to large, random generated formulas?
 - how would the NNs perform on larger, human-made formulas?