Logic and Problem Solving with Prolog

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

ICLP’2022

a copy of these slides is at:

a recording of the talk is at:
http://www.cse.unt.edu/~tarau/research/2022/PrologTutorial.mp4.zip
Outline

1. Prolog at 50: Forever Young!
2. Prolog: the Basics
3. A Glimpse at how Prolog works, actually
4. Some Neat Language Constructs in Prolog
5. On Prolog Extensions, with a bias for “The Road Not Taken”
6. Prolog as a Problem Solving Tool
7. The final round: a few harder things, done easily
8. A simple Prolog-based Neuro-symbolic Computing Technique
9. Conclusions and Suggestions for Next Learning Steps
10. Questions?
Prolog at 50: Forever Young!
Prolog: Programming in Logic – a (very) short history

- originating in the late 70’s, logic based alternative to LISP, ready for AI
- motivations for Programming in Logic:
 - Alain Colmerauer: programming grammars for NLP [4, 5]
 - Robert Kowalski: algorithms = logic + control [12, 10]
- from First Order Logic to Prolog in a nutshell:
 - shape of the general case, after elimination of quantifiers:
 \[a ; b :- c, d, e. \]
 - restricted to a computationally well-behaved subset of predicate logic:
 - **Horn clauses**: \[a :- b, c, d. \] all variables universally quantified
 - SLD-resolution, using Alan Robinson’s unification algorithm
 - multiple answers returned: (improperly) called “non-deterministic” execution
- newer derivatives: Constraint Programming, SAT-solvers, Answer Set Programming: exploit fast execution of propositional logic
- a founding member of the “declarative programming” family
- more about history: 50 years of Prolog, [9], early years: [11]
Prolog: raising again, possibly as part of a new AI-Spring

Programming Language ratings - from the Tiobe index (June 2022)

- 1 Python 12.20 %
- 2 C 11.91 %
- 10 Swift 1.55 %
- 15 Go 1.02 %
- 20 Prolog 0.74 %
- 28 Julia 0.52 %
- 32 Lisp 0.35 %
- 34 Scala 0.30 %
- 38 Haskell 0.21 %
- 44 Scheme 0.19%
- 50 ML 0.17 %

a few years ago: Prolog not on the list (for being behind the first 50)
Prolog: the Basics
% color vertices with given colors Cs
color_graph([],_).

color_graph([e(CI,CJ)|Es],Cs):-
 take_one_color(CI,Cs,OtherCs),
 take_one_color(CJ,OtherCs,_), % CJ is anything except CI
 color_graph(Es,Cs).

take_one_color(C,[C|Cs],Cs).
take_one_color(C,[Other|Cs1],[Other|Cs2]):-take_one_color(C,Cs1,Cs2).

% test data: undirected graph as list of edges
go:-Edges=[
 e(V1,V2),e(V2,V3),e(V1,V3),e(V3,V4),e(V4,V5),
 e(V5,V6),e(V4,V6),e(V2,V5),e(V1,V6)
],
 Colors=[r,g,b],
 color_graph(Edges,Colors),
 writeln(Edges),
 fail
; writeln(done).
Running the Program (BTW, all the code for this tutorial is at https://github.com/ptarau/PrologTutorial

/*
$ swipl
?- consult('cols.pro').
...
?- go.
[e (r, g), e (g, b), e (r, b), e (b, r), e (r, b), e (b, g), e (r, g), e (g, b), e (r, g)]
[e (r, g), e (g, b), e (r, b), e (b, g), e (g, r), e (r, b), e (g, b), e (g, r), e (r, b)]
[e (r, b), e (b, g), e (r, g), e (g, r), e (r, g), e (g, b), e (r, b), e (b, g), e (r, b)]
[e (r, b), e (b, g), e (r, g), e (g, b), e (b, r), e (r, g), e (b, g), e (b, r), e (r, g)]
...
[e (b, g), e (g, r), e (b, r), e (r, g), e (g, b), e (b, r), e (g, r), e (g, b), e (b, r)]
[e (b, g), e (g, r), e (b, r), e (r, b), e (b, r), e (r, g), e (b, g), e (g, r), e (b, g)]
done.
true.
*/
Prolog: unification, backtracking, clause selection

?- X=a, Y=X. % variables uppercase, constants lower
X = a, Y = a.

?- X=a, X=b.
false.

?- f(X,b)=f(a,Y). % compound terms unify recursively
X = a, Y = b.

% clauses
a(1). a(2). a(3). % facts for a/1
b(2). b(3). b(4). % facts for b/1

c(0).
c(X) :- a(X), b(X). % a/1 and b/1 must agree on X

?- c(R). % the goal at the Prolog REPL
R=0; R=2; R=3. % the stream of answers
Propositional Logic: with pure Prolog and a few CUTs

- truth tables
- naive SAT algorithm
- naive tautology prover

```prolog
truthTable(F) :- term_variables(F,Vs), eval(F,R), writeln(Vs:R), fail ; true.
sat(X) :- eval(X,1), !.
taut(X) :- not(eval(X,0)).
eval(X,X) :- var(X), !, bit(X).
eval(X,R) :- integer(X), !, R=X.
... 
eval((A*B),R) :- eval(A,X), eval(B,Y), conj(X,Y,R).
eval((A+B),R) :- eval(A,X), eval(B,Y), disj(X,Y,R).
... 
bit(0).
bit(1).
```

full code at: https://github.com/ptarau/PrologTutorial/blob/main/code/boolean_logic.pro
Examples

?- truthTable(A->B->C).
[0, 0, 0]:1
[0, 0, 1]:1
[0, 1, 0]:1
[0, 1, 1]:1
[1, 0, 0]:1
[1, 0, 1]:1
[1, 1, 0]:0
[1, 1, 1]:1
true.

A = B, B = 0,
C = 1.

% Peirce's law
?- taut(((X -> Y) -> X) -> X).
true.
A favorite Prolog Data Type: Lists

full code at: https://github.com/ptarau/PrologTutorial/blob/main/code/lists.pro

% concatenate to lists
append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

% member in terms of append
member__(X, Xs) :- append__(__, [X|__], Xs).

% generate subsets of a set
subset_of([], []).
subset_of([_|Xs], Ys) :- subset_of(Xs, Ys).
subset_of([X|Xs], [X|Ys]) :- subset_of(Xs, Ys).

% a simple quicksort predicate
qsort([], []).
qsort([X|Xs], Rs) :-
 findall(Y, (member(Y, Xs), Y<X), LittleOnes),
 findall(Y, (member(Y, Xs), Y>=X), BigOnes),
 qsort(LittleOnes, Firsts), qsort(BigOnes, Lasts),
 append(Firsts, [X|Lasts], Rs).
Examples

?- append_([1, X, 3], [Y, 5], [A, 2, B, 4, C]).
X = 2,
Y = 4,
A = 1,
B = 3,
C = 5.

?- member__(X, [1, 2]).
X = 1 ;
X = 2.

?- subset_of([1, 2, 3], Xs).
Xs = [] ;
Xs = [3] ;
Xs = [2] ;
Xs = [2, 3] ;
Xs = [1] ;
Xs = [1, 3] ;
Xs = [1, 2] ;
Xs = [1, 2, 3].

?- qsort([3, 2, 1, 5, 3, 6, 6, 2], Sorted).
Sorted = [1, 2, 2, 3, 3, 5, 6, 6].
A Glimpse at how Prolog works, actually
Unification: key intuition and a few more examples

- Prolog terms: trees with function symbols or atoms labeling their nodes
- two terms unify if the corresponding trees overlap, when allowing variables to match subtrees
- but, this only happens if equality constraints hold: a variable cannot match two different subtrees!
- also, cycles are forbidden (see unify_with_occurs_check), but this is not enforced by default

```prolog
\% recursive descent to unify subterms
?- f(X, g(X,X)) = f(h(Z,Z),U), Z = a.
X = h(a,a) ,
Z = a ,
U = g(h(a,a), h(a,a))

\% the same variables can occur on both sides
?- [X,Y,Z]=[f(Y,Y), g(Z,Z), h(a,b)].
X = f(g(h(a,b), h(a,b)), g(h(a,b), h(a,b))),
Y = g(h(a,b), h(a,b)),
Z = h(a,b)
```
A stack-based unification algorithm

actually part of the Minlog interpreter at: https://github.com/ptarau/PrologTutorial/blob/main/code/minlog/minlog.py

def unify(x, y, trail):
 ustack = [y,x]
 while ustack:
 x1 = deref(ustack.pop())
 x2 = deref(ustack.pop())
 if x1 == x2: continue
 if isinstance(x1, Var): x1.bind(x2, trail)
 elif isinstance(x2, Var): x2.bind(x1, trail)
 elif not (isinstance(x1, tuple) and isinstance(x2, tuple)): return False
 else: # assuming x1,x2 are both tuples (i.e., compound terms)
 arity = len(x1)
 if len(x2) != arity: return False
 for i in range(arity - 1, -1, -1): # going right to left here!
 ustack.append(x2[i])
 ustack.append(x1[i])
 return True

deref(): dereferencing is just following variable-to-variable links until a
nonvariable term or unbound variable is reached
The meta-interpreter *metaint/1* uses a (difference)-list view of prolog clauses.

```
metaint([]). % no more goals left, succeed
metaint([G|Gs]):- % unify the first goal with the head of a clause
    cls([G|Bs],Gs), % build a new list of goals from the body of the
    % clause extended with the remaining goals as tail
    metaint(Bs). % interpret the extended body
```

- clauses are represented as facts of the form *cls/2*
- the first argument representing the head of the clause + a list of body goals
- clauses are terminated with a variable, also the second argument of *cls/2*.

```
cls([ add(0,X,X)          |Tail],Tail).
cls([ add(s(X),Y,s(Z)), add(X,Y,Z) |Tail],Tail).
cls([ goal(R), add(s(s(0)),s(s(0)),R) |Tail],Tail).
```

```
?- metaint([goal(R)]).
R = s(s(s(s(0)))).
```
```python
def interp(css, goal):
    def step(goals):
        """
        recursively applies unfolding to its goal stack
        backtracking is implemented using "yield"
        """
        def undo(trail):
            ... # unbinds variables on backtracking
        def unfold(g, gs):
            ... # tries to unify goal g with head of a clause

        trail = []
        if goals == ():
            yield goal
        else:
            g, gs = goals
            for newgoals in unfold(g, gs):
                yield from step(newgoals)
                undo(trail)

        yield from step(goal)
```
Fast Implementation: the Warren Abstract Machine (WAM)

designed by D.H.D. Warren in the early 80’s

uses registers, two stacks (for goals and clause choices), heap and trail

cited this days as [1], a very good tutorial introduction

improvements over the years, but basic architecture unchanged

- simplified WAM, using a transformation to binary clauses [16] [14]
- alternative designs: stack frames based [19]
- tabling, first-order semantics for HiLog [13], [3]
- just-in-time indexing schemes of YAP [6] and SWI-Prolog [18]

implemented both natively and as a software virtual machine

an early overview of WAM derivatives: [17]

a TPLP issue dedicated to Prolog system implementations:
[6, 2, 13, 8, 19, 14]

overview of parallel implementations: [7]
Some Neat Language Constructs in Prolog
A Prolog source-level transformation: Definite Clause Grammars (DCGs)

Prolog’s DCG preprocessor transforms a clause defined with “\(\to\)” like

\[
a_0 \rightarrow a_1, a_2, \ldots, a_n.
\]

into a clause where predicates have two extra arguments expressing a chain of state changes as in

\[
a_0(S_0,S_n) :\to a_1(S_0,S_1), a_2(S_1,S_2), \ldots, a_n(S_{n-1},S_n).
\]

- they can be used to compose relations (functions in particular)
- with compound terms (e.g. lists) as arguments they form a Turing-complete embedded language

\[
f \rightarrow g, h.
\]

\[
f(In, Out) :\to g(In, Temp), h(Temp, Out).
\]

Some extra notation: \{ . . . \} calls to Prolog, \[. . . \] wraps terminal symbols
Playing with DCGs - a generation example

dalle-->subject,verb,object.

subject-->[a,cat];[a,dog].
verb-->[sitting].
adjective-->[golden];[shiny].
object-->[on,the],adjective,location,[with,a],instrument.
location-->[moon].
instrument-->[violin];[trumpet].

```prolog
go:-
dalle(Words,[]),nl,
        member(W,Words), write(W),write(' '),fail.
go.
```

pick any of the generated sentences
paste it to: https://www.craiyon.com/
the Dalle-mini program will paint it!

?- go.
a cat sitting on the golden moon with a violin
a cat sitting on the golden moon with a trumpet
...
a dog sitting on the shiny moon with a trumpet
The imperfect charm of our neuro-symbolic moonshot :-)

Figure: The Dall.e-like craiyon.com picture

a cat sitting on the golden moon with a trumpet
Prolog’s procedural language constructs are as old as the language itself (a reason some of them will feel a bit rusty)

CUT ("!") is needed to control search and express if-the-else and case constructs

asserta/1, assertz/1, retract/1, retractall/1, abolish/1, clause/2 create and update the “dynamic database” - basically supporting a self-modifying program

setarg, nb_setarg support backtrackable or persistent array operations on compound terms playing the role of arrays

we will not teach them to you, but as you will learn about them just because of that, the advice is to use them with moderation :-)

but do not fear occasional impurity, especially in library development code (e.g., aggregates) if wrapped up into a declarative looking API
On Prolog Extensions, with a bias for “The Road Not Taken”
the shared theme, at least at implementation level: some form of coroutining
- constraint programming: boolean, finite domains etc.
 - key to implementing them: coroutining via attributed variables
 - goals are suspended until unification triggers resumption
 - another application: lazy streams and in particular lazy lists
- tabling: avoiding re-execution of goals already seen, including with “well-behaved negation as failure” (SLDNF-resolution)
- parallel execution: AND-parallelism, OR-parallelism
- multi-threading, remote execution, coordination
- our next focus: a less well-known but critical extension to keep Prolog competitive with modern coroutining features now prevalent in popular languages: (Python, Javascript, C#, etc..) ⇒ First-class Logic Engines
we want full reflection of Prolog’s multiple-answer generation (our 2-clause meta-interpreter “cheats” when it inherits that from the underlying Prolog)

- a logic engine is a Prolog language processor reflected through an API that allows its computations to be controlled interactively from another logic engine

- intuition: it is very much the same thing as a programmer controlling Prolog’s interactive toplevel loop:
 - launch a new goal
 - ask for a new answer
 - interpret it
 - react to it

- logic engines can create other logic engines as well as external objects
- logic engines can be controlled cooperatively or preemptively

SWI-Prolog code at: https://github.com/ptarau/PrologTutorial/blob/main/code/engines.pro
new_engine(AnswerPattern, Goal, Engine):

- creates a new instance of the Prolog interpreter, uniquely identified by Engine
- shares code with the currently running program
- initialized with Goal as a starting point
- AnswerPattern: answers returned by the engine will be instances of the pattern
Engines: ask/2, stop/1

ask(Engine, AnswerInstance):

- tries to harvest the answer computed from Goal, as an instance of AnswerPattern
- if an answer is found, it is returned as the(AnswerInstance), otherwise the atom no is returned
- it is used to retrieve successive answers generated by an Engine, on demand
- it is responsible for actually triggering computations in the engine
- one can see this as transforming Prolog’s backtracking over all answers into a deterministic stream of lazily generated answers

stop(Engine):

- stops the Engine
- no is returned for new queries
The yield operation: a key co-routining primitive

yield(Term)

- will save the state of the engine and transfer control and a result Term to its client
- the client will receive a copy of Term simply by using its ask/2 operation
- an Engine returns control to its client either by calling yield/1 or when a computed answer becomes available

A simple application example: throwing an exception

\[
\text{throw}(E) :- \text{yield}(ext{exception}(E)).
\]

SWI-Prolog implementation (also with more on “talking” to the engines) at:

https://www.swi-prolog.org/pldoc/man?section=engines
Typical use of the Engine API

1. the *client* creates and initializes a new *engine*

2. the *client* triggers a new computation in the *engine*:
 - the *client* passes some data and a new goal to the *engine* and issues a `ask/2` operation that passes control to it
 - the *engine* starts a computation from its initial goal or the point where it has been suspended and runs (a copy of) the new goal received from its *client*
 - the *engine* returns (a copy of) the answer, then suspends and returns control to its *client*

3. the *client* interprets the answer and proceeds with its next computation step

4. the process is fully reentrant and the *client* may repeat it from an arbitrary point in its computation
What can we do with first-class engines?

- define the complete set of ISO-Prolog operations at source level
- in fact, one can define the engine operations in Horn clause Prolog - with a bit of black magic (e.g., splitting a term into two variant terms)
- implement (at source level) Erlang-style messaging - with millions of engines
- implement Prolog’s dynamic database at source level
- build an algebra for composing engines and their answer streams
- implement “tabling” (a form of dynamic programming that avoids recomputation) at source level

NEW: first-class logic engines have been added to Natlog, a Prolog with a lighter syntax tightly integrated with Python: [15]

use pip3 install natlog to install it or get it from https://github.com/ptarau/minlog
if(Cond,Then,Else) :-
 new_engine(Cond,Cond,Engine),
 ask(Engine,Answer), stop(Engine),
 process_answer(Answer,Cond,Then,Else).

process_answer(the(Cond),Cond,Then,_):=call(Then).
process_answer(no,_,_Else):=call(Else).

not_(G) :- if(G,fail,true).
one_(G) :- if(G,true,fail).
var_(X):-not_(not_(not_(X=1))),not_(not_(X=2)).
nonvar_(X):-not_(var_(X)).

copy_term_(T,CT) :- new_engine(T,true,E), ask(E,the(CT)), stop(E).

findall_(X,G,Xs) :- new_engine(X,G,E), ask(E,Y), collect(E,Y,Xs).

collect(_,no,[]).
collect(E,the(X),[X|Xs]) :- ask(E,Y), collect(E,Y,Xs).
Examples

an infinite Fibonacci stream with yield

```prolog
fibo(X) :- new_engine(_, slide_fibo(1,1),E), repeat, ask(E, the(X)).

slide_fibo(X,Y):-Z is X+Y, yield(X), slide_fibo(Y,Z).
```

?- fibo(X).
X = 1 ;
X = 1 ;
X = 2 ;
X = 3 ;
...

?- findall_(X,member(X, [1,2,3]),Xs).
Xs = [1, 2, 3].

?- X=1,if(X=1,Y=2,Y=3).
X = 1,
Y = 2.

?- X=42,if(X=1,Y=2,Y=3).
X = 42,
Y = 3.

See some advanced uses of engines at: https://github.com/ptarau/AnswerStreamGenerators/blob/master/lazy_streams-0.5.0/prolog/lazy_streams.pl

Paul Tarau (University of North Texas) Logic and Problem Solving with Prolog ICLP’2022 34/76
Prolog as a Problem Solving Tool
Sudoku (for kids): the board filled out with logic variables

\[
s4x4([[\[S11, S12, S13, S14],[S21, S22, S23, S24],[S31, S32, S33, S34],[S41, S42, S43, S44]],[[S11, S21, S31, S41],[S12, S22, S32, S42],[S13, S23, S33, S43],[S14, S24, S34, S44]],[[S11, S12, S21, S22],[S13, S14, S23, S24],[S31, S32, S41, S42],[S33, S34, S43, S44]])
\]
The program: just a maplist of maplists of permutations

```
sudoku(Xss):-
s4x4(Xsss),Xsss=[Xss|_],
maplist(maplist(permute([1,2,3,4])),Xsss).

permute([],[]).
permute([X|Xs],Zs):-permute(Xs,Ys),ins(X,Ys,Zs).

ins(X,Xs,[X|Xs]).
ins(X,[Y|Xs],[Y|Ys]):-ins(X,Xs,Ys).

go:-sudoku(Xss),nl,member(Xs,Xss),write(Xs),nl,fail ; nl.

?- go.
[1,2,3,4]
[3,4,1,2]
[2,3,4,1]
[4,1,2,3]
...
```

code at https://github.com/ptarau/PrologTutorial/blob/main/code/sudoku4kids.pro
Sudoku, for ages 13 or more - with graph coloring

- the previous program is simple and declarative but very slow
- what can we do, with just Prolog and no constraints, SAT or ASP?
- sudoku on a NxN grid is NP-complete ...
- NP-complete programs have P-time translations to other NP-complete programs, with possibly faster solvers for them (e.g., SAT)
- our solver candidate will be graph coloring
- we will constrain variables to have different colors that their neighbors on rows, columns or square blocks!
- a bit like the “all_different” global constraint propagator
- full code at: https://github.com/ptarau/PrologTutorial/blob/main/code/sudoku_in_style.pro
- moreover, we would like, as we are in Prolog, to either solve a given Problem or to generate (all) problems of a given size
Transforming Sudoku to a graph coloring problem

full code at: https://github.com/ptarau/PrologTutorial/blob/main/code/sudoku_in_style.pro

```prolog
% build dif graph
to_dif_graph(B,Difs):-
  functor(B,_,N),
  bagof(XDif,
    I^J^ (index_pairs(N,I-J),to_a_dif_graph(N,B,I,J,XDif)), Difs).

% collects all difs for var at I,J in board
to_a_dif_graph(N,B,I,J,X-Difs):-at(B,I-J,X),
  difs(row_dif,N,B,I,J,RowDifs),
  difs(col_dif,N,B,I,J,ColDifs),
  difs(bloc_dif,N,B,I,J,[BlocDifs]),
  app([RowDifs,ColDifs,BlocDifs],Difs).

% collects difs of a row, col or bloc generator
difs(Generator,N,B,I,J,Difs):-
  bagof(V, call(Generator,N,B,I,J,V),Difs).
```

Paul Tarau (University of North Texas)
Once translated to graph coloring, Sudoku is just a maplist of color picks!

\begin{verbatim}
sudoku(B) :-
 functor(B,_,N), % N is the size of the board B
 to_dif_graph(B,Difs), % builds dif graph
 maplist(pick(N),Difs). % constrains graph

pick/2 finds a position X (seen as a “color”) such that X is not in the set Xs of its neighbors in rows, columns or blocks

note that this set is trimmed down such that each neighbor (a logical variable or a “color” assigned to an integer) is represent only once

\begin{verbatim}
pick(N,X-Xs) :- between(1,N,X), + member_const(X,Xs).

member_const(X,[Y|_]) :- nonvar(Y),X==:=Y, !.
member_const(X,[_|Xs]) :- member_const(X,Xs).
\end{verbatim}

NOTE: more compact Sudoku solvers can be built using finite domain constraints or ASP-systems, but our point here is the fact that one can do it quite efficiently in plain Prolog
Solving a known to be hard Sudoku problem: “Escargot”

```
escargot ([
    [1, _, _, _, _, 7, _, 9, _],
    [_, 3, _, _, 2, _, _, _, 8],
    [_, _, 9, 6, _, _, 5, _, _],
    [_, _, 5, 3, _, _, 9, _, _],
    [_, 1, _, _, 8, _, _, _, 2],
    [6, _, _, _, 4, _, _, _, _],
    [3, _, _, _, _, 1, _, _, _],
    [_, 4, _, _, _, _, _, _, 7],
    [_, _, 7, _, _, _, 3, _, _]
]);
```

the program can solve or generate problems of given size (tested up to 16x16)
N-Queens as a pure Horn Clause program

- original idea due to Thom Frühwirth
- row, columns and diagonal constraints are expressed directly in term of the lists containing the positions of the queens, \(\Rightarrow \) no arithmetic involved!
- see proof of correctness in Wlodek Drabent’s paper at ICLP’22

```prolog
goal (Queens) :- queens ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], Queens).

queens (Qs, Ps) :- gen_places (Qs, Ps), place_queens (Qs, Ps, _, _).

gen_places([], []).
gen_places([_|Qs], [_|Ps]) :- gen_places(Qs, Ps).

% place_queen (Queen, Column, Updiagonal, Downdiagonal)
place_queen(I, [I|_], [I|_], [I|_]).
place_queen(I, [_|Cs], [_|Us], [_|Ds]) :- place_queen(I, Cs, Us, Ds).

place_queens([], _, _, _).
place_queens([I|Is], Cs, Us, [_|Ds]) :-
    place_queens(Is, Cs, [_|Us], Ds),
    place_queen(I, Cs, Us, Ds).
```

Paul Tarau (University of North Texas) Logic and Problem Solving with Prolog ICLP’2022 42 / 76
Examples

?- qs([a,b,c,d],Qs).
Qs = [b, d, a, c] ;
Qs = [c, a, d, b] .

?- numlist(1,24,Ns),qs(Ns,Qs).
Ns = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
Qs = [24,21,23,20,22,8,3,7,19,10,18,6,4,17,1,5,2,16,14,12,9,15,13,11].

- it is a pure Prolog program, no CUTs, no arithmetic
- the program simply states that the queens should be distinct on columns and diagonals, once row position is fixed
- input does not need to be numeric, the program can be seen simply as a filter on the set of all permutations of given size
- unusually fast for a pure Prolog program (e.g., N=24)
- still, not comparable with CLP-FD, SAT or ASP equivalents going up to sizes in the hundreds
The final round: a few harder things, done easily
de Bruijn Indices provide a name-free representation of lambda terms that can be transformed by a renaming of variables (α-conversion) will share a unique representation:

- variables following lambda abstractions are omitted
- their occurrences are marked with natural numbers counting the number of lambdas until the one binding them on the way up to the “root” of the term

λ(a(s(0), l(0))) represents α-equivalent terms (roughly, same up to a renaming of their variables) e.g.,

- λz.λy. (z (λx.x))
- λz.λy. (z (λz.z))
- ...

λ-terms are called closed if the de Bruijn counters do not reach outside the scope of the lambda binders, when counting one step up for each binder crossed

otherwise they are called open
λ-terms of and their (simple) types

λ-terms are binary-unary trees, with leaves in unary arithmetic marking distances to their lambda binders (de Bruijn notation)

the constructors are

- \(l/1 \) = lambda node
- \(a/2 \) = application node
- \(s/1 \) = de Bruijn index counter (in successor arithmetic)
- \(0 \) = de Bruijn index zero

the types of the lambda terms are binary trees:

- type constructor \(-\to\)
- variables in leaf positions

code at https://github.com/ptarau/PrologTutorial/blob/main/code/type_inference.pro
Generating all λ-terms of a given size (possibly open)

- we use successor arithmetic: 0, s(0), s(s(0)) ...
- possibly open term: de Bruijn indices might point higher then our lambda binders
- size definition: $a/2 = 2$ units, $l/1 = 1$ unit. $s/1 = 1$ unit, $0 = 0$ units

```prolog
genLambda(s(S),X):-genLambda(X,S,0).

genLambda(X,N1,N2):-nth_elem(X,N1,N2).

genLambda(l(A),s(N1),N2):-genLambda(A,N1,N2).

genLambda(a(A,B),s(s(N1)),N3):-
genLambda(A,N1,N2),
genLambda(B,N2,N3).

nth_elem(0,N,N).
nth_elem(s(X),s(N1),N2):=nth_elem(X,N1,N2).
```
Examples

?- genLambda(s(s(s(0))), Term).
Term = s(s(0)) ;
Term = l(s(0)) ;
Term = l(l(0)) ;
Term = a(0, 0) ;
false.

?- genLambda(s(s(s(s(0)))), Term).
Term = s(s(s(0))) ;
Term = l(s(s(0))) ;
Term = l(l(s(0))) ;
Term = l(l(l(0))) ;
Term = l(a(0, 0)) ;
Term = a(0, s(0)) ;
Term = a(0, l(0)) ;
Term = a(s(0), 0) ;
Term = a(l(0), 0) ;
false.
Generating closed terms

- a list, initially empty of variables is built
- each lambda binder pushes a variable to it
- each leaf is constrained to correspond, via its de Bruijn index to a variable
- we use the list to count binders - but it will later hold types that we infer

```prolog
genClosed(s(S),X):-genClosed(X,[],S,0).

genClosed(X,Vs,N1,N2):-nth_elem_on(X,Vs,N1,N2).
genClosed(l(A),Vs,s(N1),N2):-genClosed(A,[_|Vs],N1,N2).
genClosed(a(A,B),Vs,s(s(N1)),N3):-
    genClosed(A,Vs,N1,N2),
    genClosed(B,Vs,N2,N3).

nth_elem_on(0,[_|_],N,N).
nth_elem_on(s(X),[_|Vs],s(N1),N2):-nth_elem_on(X,Vs,N1,N2).
```
Example

?- genClosed(s(s(s(0))), Term).
Term = l(l(0)) .

?- genClosed(s(s(s(s(0)))), Term).
Term = l(l(s(0))) ;
Term = l(l(l(0))) ;
Term = l(a(0, 0)) .

?- genClosed(s(s(s(s(s(0))))), Term).
Term = l(l(l(s(0)))) ;
Term = l(l(l(l(0)))) ;
Term = l(l(a(0, 0))) ;
Term = l(a(0, l(0))) ;
Term = l(a(l(0), 0)) ;
Term = a(l(0), l(0)) .
Type Inference for λ-terms

- in an application (a/2 node): $X \rightarrow Y$ and X reduce to Y
- all variables of a lambda binder $1/1$ should have the same type
- \Rightarrow `unify_with_occurs_check` will unify them, avoiding cycles!

```prolog
type_of(X, T) :- type_of(X, T, []).  

nth_elem_of(0, [X|_], X).  

nth_elem_of(s(I), [_|Xs], X) :- nth_elem_of(I, Xs, X).  

type_of(I, V, Vs) :-  
    nth_elem_of(I, Vs, V0),  
    unify_with_occurs_check(V, V0).  

type_of(l(A), (X->Y), Vs) :-  
    type_of(A, Y, [X|Vs]).  

type_of(a(A,B), Y, Vs) :-  
    type_of(A, (X->Y), Vs),  
    type_of(B, X, Vs).  

type_of(l(A), (X->Y), Vs) :-  
    type_of(A, Y, [X|Vs]).  

this is unusually easy in Prolog, but it might take a few hundred lines in your favorite other language ...
Generating simply-typable de Bruijn terms of a given size

- Types mimic function application (i.e., $\beta$-reduction of lambda terms)
- We refine our program generating closed terms by imposing constraints on the variables introduced by lambda binders
- De Bruijn indices pointing to the same variable should agree on types
- Unification with “occurs-check”: circular types are not allowed!

```prolog
genTypable(s(S),X,T) :- genTypable(X,T,[],S,0).

genTypable(X,V,Vs,N1,N2) :- genIndex(X,Vs,V,N1,N2).

genTypable(l(A),(X->Xs),Vs,s(N1),N2) :- genTypable(A,Xs,Vs,N1,N2).

genTypable(a(A,B),Xs,Vs,s(s(N1)),N3) :-
 genTypable(A,(X->Xs),Vs,N1,N2),
 genTypable(B,X,Vs,N2,N3).

genIndex(0,[V|_],V0,N,N) :- unify_with_occurs_check(V0,V).

genIndex(s(X),[_|Vs],V,s(N1),N2) :- genIndex(X,Vs,V,N1,N2).
```

Paul Tarau (University of North Texas)  Logic and Problem Solving with Prolog  ICLP’2022
Examples

?- genTyped(4).
\(l(l(l(s(0))))\)
A→B→C→B

\(l(l(l(l(0))))\)
A→B→C→D→D

\(l(a(0,l(0)))\)
((A→A)→B)→B

\(l(a(l(0),0))\)
A→A

\(a(l(0),l(0))\)
A→A
Writing a theorem prover for Intuitionistic Propositional Logic

code at https://github.com/ptarau/PrologTutorial/blob/main/code/prover.pro

- intuitionistic logic is key to today's proof assistants
- there's a correspondence between computations and proofs: the Curry-Howard isomorphism
- in its simplest form, it connects the implicational fragment of propositional intuitionistic logic with types in the simply typed lambda calculus
- type inference computes the type of a λ-term (a theorem in IPC!)
- a theorem prover solves the harder (PSPACE-complete) inverse problem of finding a proof given a formula representing a type
- a simply-typed λ-term can be synthesized as a result of a successful proof for the implicational subset
- next we will implement a more general prover, covering all interesting IPC operators
Roy Dyckhoff’s **G4ip** sequent calculus

termination ensured with “multiset ordering”, no loop checking is needed!

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma, p \Rightarrow p \quad Ax \ (p \text{ an atom})$</td>
<td></td>
</tr>
<tr>
<td>$\Gamma \Rightarrow \varphi \quad \Gamma \Rightarrow \psi \quad R\wedge$</td>
<td>$\Gamma \Rightarrow \varphi \wedge \psi$</td>
</tr>
<tr>
<td>$\Gamma \Rightarrow \varphi_i$</td>
<td>$\Gamma \Rightarrow \varphi_0 \vee \varphi_1 \quad R\vee \ (i = 0, 1)$</td>
</tr>
<tr>
<td>$\Gamma \Rightarrow \varphi \quad \Gamma \Rightarrow \psi \quad R\rightarrow$</td>
<td>$\Gamma \Rightarrow \varphi \rightarrow \psi$</td>
</tr>
<tr>
<td>$\Gamma \Rightarrow \varphi \rightarrow (\psi \rightarrow \gamma) \Rightarrow \Delta \quad L\wedge \rightarrow$</td>
<td>$\Gamma \Rightarrow \psi \rightarrow \gamma \Rightarrow \Delta$</td>
</tr>
<tr>
<td>$\Gamma \Rightarrow \varphi \wedge \psi \rightarrow \gamma \Rightarrow \Delta \quad L\wedge \rightarrow$</td>
<td>$\Gamma \Rightarrow \varphi \rightarrow \psi \quad \gamma, \Gamma \Rightarrow \Delta \quad L\rightarrow\rightarrow$</td>
</tr>
<tr>
<td>$\Gamma, \varphi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta \quad L\vee \rightarrow$</td>
<td>$\Gamma, \varphi \vee \psi \Rightarrow \Delta \quad L\vee \rightarrow$</td>
</tr>
<tr>
<td>$\Gamma, p, \varphi \Rightarrow \Delta \quad Lp \rightarrow \ (p \text{ an atom}) \quad \Gamma, p \Rightarrow \varphi \Rightarrow \Delta \quad L\rightarrow\rightarrow$</td>
<td>$\Gamma, \varphi \rightarrow \gamma, \psi \rightarrow \gamma \Rightarrow \Delta$</td>
</tr>
</tbody>
</table>

Paul Tarau (University of North Texas) Logic and Problem Solving with Prolog ICLP’2022 55 / 76
we derive the prover directly from Roy Dyckhoff’s G4ip calculus

code at https://github.com/ptarau/PrologTutorial/blob/main/code/prover.pro

```prolog
iprover(true,_):-!.
iprover(A,Vs):-memberchk(A,Vs),!.
iprover(_,Vs):-memberchk(false,Vs),!.
iprover(~A,Vs):-!,iprover(false,[A|Vs]).
iprover(A<->B,Vs):-!,iprover(B,[A|Vs]),iprover(A,[B|Vs]).
iprover((A->B),Vs):-!,iprover(B,[A|Vs]).
iprover((B<-A),Vs):-!,iprover(B,[A|Vs]).
iprover(A & B,Vs):-!,iprover(A,Vs),iprover(B,Vs).
iprover(G,Vs1):- % atomic or disj or false
 select(Red,Vs1,Vs2),
 iprover_reduce(Red,G,Vs2,Vs3),!
 ,iprover(G,Vs3).
iprover(A v B, Vs):- (iprover(A,Vs) ; iprover(B,Vs)),!.
```

Paul Tarau (University of North Texas) Logic and Problem Solving with Prolog ICLP’2022 56 / 76
we delegate details to helper predicates: `iprover_reduce/4` and `iprover_impl/4`.

```
iprover_reduce(true,_,Vs1,Vs2):=-!,iprover_impl(false,false,Vs1,Vs2).
iprover_reduce(~A,_,Vs1,Vs2):=-!,iprover_impl(A,false,Vs1,Vs2).
iprover_reduce((A->B),_,Vs1,Vs2):=-!,iprover_impl(A,B,Vs1,Vs2).
iprover_reduce((B<-A),_,Vs1,Vs2):=-!,iprover_impl(A,B,Vs1,Vs2).
iprover_reduce((A & B),_,Vs,[A,B| Vs]):=-!.
iprover_reduce((A<->B),_,Vs,[(A->B), (B->A) | Vs]):-!.
iprover_reduce((A v B),G,Vs,[B|Vs]):-iprover(G,[A|Vs]).
```

```
iprover_impl(true,B,Vs,[B|Vs]):=-!.
iprover_impl(~C,B,Vs,[B|Vs]):=-!,iprover((C->false),Vs).
iprover_impl((C->D),B,Vs,[D|Vs]):=-!,iprover((C->D),[(D->B) | Vs]).
iprover_impl((D<-C),B,Vs,[D|Vs]):=-!,iprover((C->D),[(D->B) | Vs]).
iprover_impl((C & D),B,Vs,[(C-> (D->B)) | Vs]):=-!.
iprover_impl((C v D),B,Vs,[(C->B), (D->B) | Vs]):=-!.
iprover_impl((C<->D),B,Vs,[((C->D) -> ((D->C) ->B)) | Vs]):=-!.
iprover_impl(A,B,Vs,[B|Vs]):=memberchk(A,Vs).
```

Classical Logic “for free”, via Glivenko’s theorem:

```
cprover(T):-iprover(~ ~T).
```
Examples

?- iprover(p v ~p).
false.

?- cprover(p v ~p).
true.

?- iprover(~ ~ ~ p <-> ~ p).
true.

?- iprover(~ ~ p <-> p).
false.

?- cprover(~ ~ p <-> p).
true.

?- iprover((h<-b<-c<-d) <-> (h<-b&c&d)).
true.
A simple Prolog-based Neuro-symbolic Computing Technique
On training Neural Networks as Theorem Provers

- we have used Prolog to derive a generator for lambda terms and their types
- we can generate a dataset for training neural networks, turning them into reliable theorem provers, for the harder inverse problem: given a formula in the implicational subset of IPC, find a proof term for it!
- an easier problem: restrict to the linear subset of implicational IPC
- open problems, future work:
  - can this be extended to full fragments of IPC or LL?
  - would the similar success rates apply to large, random generated formulas?
  - how would the NNs perform on larger, human-made formulas?
the key ML concepts to watch for:

- “honesty”: split the dataset into: training, validation and (independent) test sets
- things to avoid:
  - overfitting (works on training, fails on validation and testing data)
  - unlikely to work well on random (high Kolmogorov complexity) data

the key NN general concepts to watch for:

- NNs are *trainable universal approximators* for a given function
- \( L_{t+1} = \sigma(A \ast L_t + b) \) where \( L_t \) is a layer at step \( t \), \( A \) is a matrix containing trainable parameters, \( b \) is a bias vector and \( \sigma \) is a non-linear function (logistic sigmoid, tanh, RELU(x)=\( \max(0,x) \), etc.)
- differentiable functions: gradients computed on backpropagation
- an intuition behind why deep NNs are needed: each layer abstracts away statistically relevant patterns that are fed to the next layer
- often, to ensure generalization, information is deliberately lost
Training the Neural Networks as Theorem Provers via the Curry-Howard Isomorphism

- formulas/types and proofs/lambda terms are both trees
- we can represent them as prefix strings
- what type of neural networks to use?
  - with trees as prefix string: “seq2seq” recurrent NNs
  - LSTM (long short term memory) NNs: good to handle long distance dependencies in the prefix forms
  - transformers might be better, but they need very large amounts of data and heavy GPU training

- an interesting special case: linear implication with theorems corresponding to lambda terms in which every binder binds exactly one variable
- “→” becomes “−→” (the “lollipop”)
Formulas depicted as trees, together with their proof terms

- formula: \( \lambda X. \lambda Y. (Y X) \)
  - \( \lambda \)
  - \( X \)
  - \( I \)
  - \( Y \)
  - \( a \)
  - \( X \)

- formula: \( \lambda X. X \)
  - \( \lambda \)
  - \( X \)
  - \( X \)
  - \( X \)
  - \( X \)
**seq2seq Neural Networks**

- sequence as input, train to guess sequence as output
- used originally for translation of natural languages, with training on large parallel corpora
- notable alternatives: *transformers*, trained to predict masked words in a sentence as well as predict next sentence in a text
  - *unsupervised* - just feeding them very large text data
- examples: BERT, GPT-3 - impressive performance on several NLP tasks (e.g., GPT-3 generating fake news)
- newer variants, possibly more in interesting: *tree2tree, dag2dag* and several types of *graph neural networks* (e.g., convolutional, attention, spectral, torch geometric)
LSTM seq2seq Neural Networks

- recurrent neural networks keep track of dependencies within sequences
- feedback from values at time $t$ is fed into computations at time $t + 1$
- long short-term memory (LSTM) is a recurrent neural network (RNN) architecture
- it can not only process single data points (such as images), but also entire sequences of data (such as text, speech or video)
- LSTM NNs have feedback connections $\Rightarrow$ LSTM avoids vanishing or exploding gradient problems by also feeding *unchanged* values to the next layer
the experiments with training the neural networks using the linear and intuitionistic theorem dataset are available at: https://github.com/ptarau/neuralgs

the \(<\text{formula},\ \text{proof term}>\) generators are available at: https://github.com/ptarau/TypesAndProofs

the generated datasets are available at: http://www.cse.unt.edu/~tarau/datasets/

next, we will illustrate with some plots that our seq2seq LSTM recurrent neural network trained on encodings of theorems and their proof-terms performs unusually well
Accuracy of the LSTM seq2seq neural network on our formula/proof term dataset for the linear logic subset

Figure: Accuracy curve for 100 epochs
Loss curve of the LSTM seq2seq neural network on our formula/proof term dataset for the linear logic subset

Figure: Loss curve for 100 epochs
Accuracy for linear subset + unprovable formulas

Figure: Accuracy curve for 100 epochs
Loss for linear subset + unprovable formulas

Figure: Loss curve for 100 epochs
Can we train Neural Network as Provers for a PSPACE-complete Logic?
Accuracy for implicational IPC

Figure: Accuracy curve for 100 epochs
Loss for implicational IPC

Figure: Loss curve for 100 epochs
Conclusions and Suggestions for Next Learning Steps

- we have overviewed some key strengths of Prolog with focus on problem solving while staying close to its pure, Horn Clause logic kernel
- a highlight: by starting from a two line meta-interpreter, we have captured the necessary step-by-step transformations that one needs to implement in a procedural language that mimics it
- suggested further explorations:
  - constraint solving extensions
  - tabling and its uses for elegant dynamic programming algorithms
  - probabilistic logic programming
- hot research topic: **neuro-symbolic** extensions to Prolog and synergies with ML in general and NLP in particular
Some Key Prolog Resources

- Marius Triska’s excellent online Prolog book
  https://www.metalevel.at/prolog

- The Art of Prolog, a great classic Prolog book: http:
  //cliplab.org/~logalg/doc/The_Art_of_Prolog.pdf

- SWI-Prolog’s excellent eco-system of libraries and extensions
  https://www.swi-prolog.org/

- a solid, industrial strength commercial system:
  https://sicstus.sics.se/

- some nice, open source Prolog Systems
  - Ciao Prolog: https://ciao-lang.org/
  - XSB Prolog: http://xsb.sourceforge.net/
  - ECLIPSe Prolog + CP system: https://eclipseclp.org/
  - GNU Prolog: http://www.gprolog.org/

- and much more: https://en.wikipedia.org/wiki/Prolog


Questions?