Boolean Evaluation with a Pairing and Unpairing Function

Paul Tarau1 Brenda Luderman2

University of North Texas1
Texas Instruments Inc.2

SYNASC’2012, Logic and Programming, Saturday, Sept 29, 11:40-12:00
by using pairing functions (bijections $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$) on natural number representations of truth tables, we derive an encoding for Ordered Binary Decision Trees (OBDTs)

boolean evaluation of an OBDT mimics its structural conversion to a natural number through recursive application of a matching pairing function

also: we derive ranking and unranking functions for OBDTs, generalize to arbitrary variable order and multi-terminal OBDTs

literate Haskell program, code at http://logic.csci.unt.edu/tarau/research/2012/hOBDT.hs
“pairing function”: a bijection $J : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$K(J(x, y)) = x,$
$L(J(x, y)) = y$
$J(K(z), L(z)) = z$

examples:
- Cantor’s pairing function: geometrically inspired (100+++ years ago - possibly also known to Cauchy - early 19-th century)
- the Pepis-Kalmar Pairing Function (1938):

$$f(x, y) = 2^x(2y + 1) - 1 \quad (1)$$
a pairing/unpairing function based on boolean operations

type N = Integer

bitunpair :: N→(N,N)
bitpair :: (N,N) → N

bitunpair z = (deflate z, deflate' z)
bitpair (x,y) = inflate x .|.. inflate' y

inflate : abcde-> a0b0c0d0e
inflate': abcde-> 0a0b0c0d0e
inflation/deflation in terms of boolean operations

\[\text{inflation}, \text{ deflation} : \mathbb{N} \to \mathbb{N} \]

\[\text{inflation} \ 0 = 0 \]
\[\text{inflation} \ n = (\text{twice} \ . \ \text{twice} \ . \ \text{inflation} \ . \ \text{half}) \ n \ || \ . \ \text{firstBit} \ n \]

\[\text{deflation} \ 0 = 0 \]
\[\text{deflation} \ n = (\text{twice} \ . \ \text{deflation} \ . \ \text{half} \ . \ \text{half}) \ n \ || \ . \ \text{firstBit} \ n \]

\[\text{deflation}' = \text{half} \ . \ \text{deflation} \ . \ \text{twice} \]
\[\text{inflation}' = \text{twice} \ . \ \text{inflation} \]

\[\text{half} \ n = \text{shiftR} \ n \ 1 : : \ N \]
\[\text{twice} \ n = \text{shiftL} \ n \ 1 : : \ N \]
\[\text{firstBit} \ n = n \ .&. \ 1 : : \ N \]
bitpair/bitunpair: an example

the transformation of the bitlists – with bitstrings aligned:

*BP> bitunpair 2012
(62, 26)

-- 2012: [0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1]
-- 62: [0, 1, 1, 1, 1, 1]
-- 26: [0, 1, 0, 1, 1]

Note that we represent numbers with bits in reverse order.
Also, some simple algebraic properties:

bitpair (x, 0) = inflate x
bitpair (0, x) = 2 * (inflate x)
bitpair (x, x) = 3 * (inflate x)
Given that unpairing functions are bijections from $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ they will progressively cover all points having natural number coordinates in the plan.

Pairing can be seen as a function $z=f(x,y)$, thus it can be displayed as a 3D surface.

Recursive application – the unpairing tree can be represented as a DAG – by merging shared nodes.
Figure: 2D curve connecting values of bitunpair \(n \) for \(n \in [0..2^{10} - 1] \)
Figure: Graph obtained by recursive application of \texttt{bitunpair} for 2012
Unpairing Trees: seen as OBDTs

data BT = O | I | D BT BT deriving (Eq, Ord, Read, Show)

unfold_bt :: (N,N) → BT
unfold_bt (n,tt) = if tt < 2^2^n
 then unfold_with bitunpair n tt
 else undefined where
 unfold_with _ n 0 | n<1 = O
 unfold_with _ n 1 | n<1 = I
 unfold_with f n tt =
 D (unfold_with f k tt1) (unfold_with f k tt2) where
 k=n-1
 (tt1,tt2)=f tt
Folding back Trees to Natural Numbers

\[
\text{fold} _\text{bt} :: \text{BT} \to (\text{N}, \text{N}) \\
\text{fold} _\text{bt} \text{ bt} = (\text{bdepth bt}, \text{fold} _\text{with bitpair bt}) \text{ where} \\
\quad \text{fold} _\text{with f O} = 0 \\
\quad \text{fold} _\text{with f I} = 1 \\
\quad \text{fold} _\text{with f (D l r)} = f (\text{fold} _\text{with f l}, \text{fold} _\text{with f r})
\]

\[
\text{bdepth O} = 0 \\
\text{bdepth I} = 0 \\
\text{bdepth (D x _)} = 1 + (\text{bdepth x})
\]

This is a purely structural operation - no boolean evaluation involved!

*BP\> unfold_bt (3,42)
\D (D (D O O) (D O O)) (D (D I I) (D I O))
*BP\> fold_bt it
(3,42)
Truth tables as natural numbers

| | | | | | | | | |
|---|---|---|---|---|---|---|---|
| x | y | z | | | f | x | y | z |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | | | → | 0 |
| 1 | 0 | 1 | | | → | 1 |
| 2 | 0 | 1 | | | → | 0 |
| 3 | 0 | 1 | | | → | 1 |
| 4 | 1 | 0 | | | → | 0 |
| 5 | 1 | 0 | | | → | 1 |
| 6 | 1 | 1 | | | → | 1 |
| 7 | 1 | 1 | | | → | 0 |

::

\{1, 3, 5, 6\} :: 106 = 2^1 + 2^3 + 2^5 + 2^6 = 2 + 8 + 32 + 64

01010110 (right to left)
Proposition

Let \(v_k \) be a variable for \(0 \leq k < n \) where \(n \) is the number of distinct variables in a boolean expression. Then column \(k \) in the matrix representation of the inputs in the truth table represents, as a bitstring, the natural number:

\[
v_k = \frac{2^n - 1}{2^k + 1}
\]

(2)

For instance, if \(n = 2 \), the formula computes \(v_0 = 3 = [0, 0, 1, 1] \) and \(v_1 = 5 = [0, 1, 0, 1] \).
The function v_n, working with arbitrary length bitstrings are used to evaluate the $[0..n-1]$ projection variables v_k representing encodings of columns of a truth table, while v_m maps the constant 1 to the bitstring of length 2^n, 111...1:

\[
v_n \colon \mathbb{N} \rightarrow \mathbb{N} \\
v_n 1 0 = 1 \\
v_n n q \mid q = n-1 = \text{bitpair} (v_n n 0,0) \\
v_n n q \mid q \geq 0 \land q < n' = \text{bitpair} (q',q') \text{ where} \\
\quad n' = n-1 \\
\quad q' = v_n n' q \\
\]

\[
v_m \colon \mathbb{N} \rightarrow \mathbb{N} \\
v_m n = v_n (n+1) 0
\]
an ordered binary decision diagram (OBDT) is a rooted ordered binary tree obtained from a boolean function, by assigning its variables, one at a time, to 0 (left branch) and 1 (right branch).

deriving a OBDT of a boolean function \(f \): repeated Shannon expansion

\[
f(x) = (\bar{x} \land f[x \leftarrow 0]) \lor (x \land f[x \leftarrow 1])
\] (3)

with a more familiar notation:

\[
f(x) = \text{if } x \text{ then } f[x \leftarrow 1] \text{ else } f[x \leftarrow 0]
\] (4)
Boolean Evaluation of OBDTs

- OBDTs ⇒ ROBDDs by sharing nodes + dropping identical branches
- \texttt{fold_obdt} might give a different result as it computes different pairing operations!
- however, we obtain a truth table if we evaluate the OBDT tree as a boolean function
- can we relate this to the original truth table from which we unfolded the OBDT?

Paul Tarau, Brenda Luderman
University of North Texas1, Texas Instruments Inc.2
evaluating an OBDT with given variable order vs

eval_obdt_with :: [N] → BT → N

eval_obdt_with vs bt =
 eval_with_mask (vm n) (map (vn n) vs) bt where
 n = genericLength vs

eval_with_mask m _ O = 0

eval_with_mask m _ I = m

eval_with_mask m (v:vs) (D l r) =
 ite_ v (eval_with_mask m vs l) (eval_with_mask m vs r)

ite_ x t e = ((t `xor` e) .&. x) `xor` e
The Equivalence of boolean evaluation and recursive pairing

SURPRISINGLY, it turns out that:

- boolean evaluation `eval_obdt` faithfully emulates `fold_obdt`
- and it also works on reduced OBDTs, ROBDDs, BDDs as they represent the same boolean formula

*BP> unfold_bt (3,42)
D (D (D O O) (D O O)) (D (D I I) (D I O))
*BP> eval_obdt it
42

Paul Tarau, Brenda Luderman
University of North Texas1, Texas Instruments Inc.2

Boolean Evaluation with a Pairing and Unpairing Function
The Equivalence

Proposition

The complete binary tree of depth \(n \), obtained by recursive applications of \texttt{bitunpair} on a truth table computes an (unreduced) OBDT, that, when evaluated (reduced or not) returns the truth table, i.e.

\[
\text{fold}_\text{obdt} \circ \text{unfold}_\text{obdt} \equiv \text{id} \quad (5)
\]

\[
\text{eval}_\text{obdt} \circ \text{unfold}_\text{obdt} \equiv \text{id} \quad (6)
\]
Ranking/unranking: bijection to/from \mathbb{N}

- one more step is needed to extend the mapping between $OBDTs$ with \mathbb{N} variables to a bijective mapping from/to \mathbb{N}:
 - we will have to “shift toward infinity” the starting point of each new block of OBDTs in \mathbb{N} as OBDTs of larger and larger sizes are enumerated
- we need to know by how much - so we compute the sum of the counts of boolean functions with up to \mathbb{N} variables.
Ranking/unranking of OBDTs

\[
\begin{align*}
\text{bsum} &:: \mathbb{N} \rightarrow \mathbb{N} \\
\text{bsum} \; 0 & = 0 \\
\text{bsum} \; n \mid n > 0 & = \text{bsum1} \; (n-1) \text{ where} \\
\text{bsum1} \; 0 & = 2 \\
\text{bsum1} \; n \mid n > 0 & = \text{bsum1} \; (n-1) + 2^{2^n} \\
\end{align*}
\]

BP> genericTake 7 bsums
[0, 2, 6, 22, 278, 65814, 4295033110]

A060803 in the Online Encyclopedia of Integer Sequences

BP> nat2obdt 42
D (D (D O I) (D I O)) (D (D O O) (D O O))

BP> obdt2nat it
42
Generalizations

Given a permutation of n variables represented as natural numbers in $[0..n-1]$ and a truth table $tt \in [0..2^{2^n} - 1]$ we can define:

\[
\text{to_obdt vs } tt \mid 0 \leq tt \&\& tt \leq m = \text{to_obdt}_\text{mn vs } tt \text{ m n where } \\
\quad n=\text{genericLength vs } \\
\quad m=\text{vm n}
\]

\[
\text{to_obdt}_\text{mn} [\] 0 _ _ = 0 \\
\text{to_obdt}_\text{mn} [\] _ _ _ = I \\
\text{to_obdt}_\text{mn} (v:vs) tt \text{ m n} = D l r \text{ where } \\
\quad \text{cond} = vn n v \\
\quad f0 = (m \ 'xor' \ \text{cond}) \ .&. tt \\
\quad f1 = \text{cond} \ .&. tt \\
\quad l = \text{to_obdt}_\text{mn vs } f1 \text{ m n} \\
\quad r = \text{to_obdt}_\text{mn vs } f0 \text{ m n}
\]
Applications

- possible applications to (RO)BDDs: circuit synthesis/verification
- BDD minimization using our generalization to arbitrary variable order
- combinatorial enumeration and random generation of circuits
- succinct data representations derived from our OBDT encodings
- an interesting “mutation”: use integers/bitstrings as genotypes, OBDTs as phenotypes in Genetic Algorithms
Conclusion

- **NEW:** the connection of pairing/unpairing functions and boolean evaluation of OBDTs
- synergy between concepts borrowed from *foundation of mathematics, combinatorics, boolean logic, circuits*
- Haskell as sandbox for experimental mathematics: type inference helps clarifying complex dependencies between concepts quite nicely - moving to a functional subset of Mathematica, after that, is routine.