
Contents
Articles

Dijkstra's algorithm 1
Bellman–Ford algorithm 9
Floyd–Warshall algorithm 14

References
Article Sources and Contributors 20
Image Sources, Licenses and Contributors 21

Article Licenses
License 22

Dijkstra's algorithm 1

Dijkstra's algorithm

Dijkstra's algorithm

Dijkstra's algorithm. It picks the unvisited vertex with the lowest-distance, calculates the distance through it to each unvisited neighbor, and updates
the neighbor's distance if smaller. Mark visited (set to red) when done with neighbors.

Class Search algorithm

Data structure Graph

Worst case performance

Graph and tree
search

algorithms
• α–β
•• A*
•• B*
•• Backtracking
•• Beam
• Bellman–Ford
•• Best-first
•• Bidirectional
•• Borůvka
• Branch & bound
•• BFS
•• British Museum
•• D*
•• DFS
•• Depth-limited
•• Dijkstra
•• Edmonds
• Floyd–Warshall
•• Fringe search
•• Hill climbing
•• IDA*
•• Iterative deepening
•• Kruskal
•• Johnson
•• Lexicographic BFS
•• Prim

http://en.wikipedia.org/w/index.php?title=File:Dijkstra_Animation.gif
http://en.wikipedia.org/w/index.php?title=Search_algorithm
http://en.wikipedia.org/w/index.php?title=Graph_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Graph_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta_pruning
http://en.wikipedia.org/w/index.php?title=A%2A_search_algorithm
http://en.wikipedia.org/w/index.php?title=B%2A
http://en.wikipedia.org/w/index.php?title=Backtracking
http://en.wikipedia.org/w/index.php?title=Beam_search
http://en.wikipedia.org/w/index.php?title=Best-first_search
http://en.wikipedia.org/w/index.php?title=Bidirectional_search
http://en.wikipedia.org/w/index.php?title=Bor%C5%AFvka%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Branch_and_bound
http://en.wikipedia.org/w/index.php?title=Breadth-first_search
http://en.wikipedia.org/w/index.php?title=British_Museum_algorithm
http://en.wikipedia.org/w/index.php?title=D%2A
http://en.wikipedia.org/w/index.php?title=Depth-first_search
http://en.wikipedia.org/w/index.php?title=Depth-limited_search
http://en.wikipedia.org/w/index.php?title=Edmonds%27_algorithm
http://en.wikipedia.org/w/index.php?title=Fringe_search
http://en.wikipedia.org/w/index.php?title=Hill_climbing
http://en.wikipedia.org/w/index.php?title=IDA%2A
http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=Kruskal%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Lexicographic_breadth-first_search
http://en.wikipedia.org/w/index.php?title=Prim%27s_algorithm

Dijkstra's algorithm 2

•• SMA*
•• Uniform-cost

Listings

•• Graph algorithms
•• Search algorithms
•• List of graph algorithms

Related topics

•• Dynamic programming
•• Graph traversal
•• Tree traversal
• Search games

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956 and published in 1959, is a
graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path
costs, producing a shortest path tree. This algorithm is often used in routing and as a subroutine in other graph
algorithms.
For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e. the shortest path)
between that vertex and every other vertex. It can also be used for finding costs of shortest paths from a single vertex
to a single destination vertex by stopping the algorithm once the shortest path to the destination vertex has been
determined. For example, if the vertices of the graph represent cities and edge path costs represent driving distances
between pairs of cities connected by a direct road, Dijkstra's algorithm can be used to find the shortest route between
one city and all other cities. As a result, the shortest path first is widely used in network routing protocols, most
notably IS-IS and OSPF (Open Shortest Path First).

Dijkstra's original algorithm does not use a min-priority queue and runs in (where is the number of
vertices). The idea of this algorithm is also given in (Leyzorek et al. 1957). The implementation based on a
min-priority queue implemented by a Fibonacci heap and running in (where is the
number of edges) is due to (Fredman & Tarjan 1984). This is asymptotically the fastest known single-source
shortest-path algorithm for arbitrary directed graphs with unbounded non-negative weights.

http://en.wikipedia.org/w/index.php?title=SMA%2A
http://en.wikipedia.org/w/index.php?title=Uniform-cost_search
http://en.wikipedia.org/w/index.php?title=Category:Graph_algorithms
http://en.wikipedia.org/w/index.php?title=Category:Search_algorithms
http://en.wikipedia.org/w/index.php?title=List_of_algorithms%23Graph_algorithms
http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Graph_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Search_game
http://en.wikipedia.org/w/index.php?title=Computer_scientist
http://en.wikipedia.org/w/index.php?title=Edsger_Dijkstra
http://en.wikipedia.org/w/index.php?title=Graph_search_algorithm
http://en.wikipedia.org/w/index.php?title=Shortest_path_problem
http://en.wikipedia.org/w/index.php?title=Graph_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Edge_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Shortest_path_tree
http://en.wikipedia.org/w/index.php?title=Routing
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Vertex_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Routing_protocol
http://en.wikipedia.org/w/index.php?title=IS-IS
http://en.wikipedia.org/w/index.php?title=OSPF
http://en.wikipedia.org/w/index.php?title=Min-priority_queue
http://en.wikipedia.org/w/index.php?title=Fibonacci_heap
http://en.wikipedia.org/w/index.php?title=Asymptotic_computational_complexity
http://en.wikipedia.org/w/index.php?title=Shortest_path_problem
http://en.wikipedia.org/w/index.php?title=Directed_graph

Dijkstra's algorithm 3

Algorithm

Illustration of Dijkstra's algorithm search for
finding path from a start node (lower left, red) to
a goal node (upper right, green) in a robot motion

planning problem. Open nodes represent the
"tentative" set. Filled nodes are visited ones, with
color representing the distance: the greener, the
farther. Nodes in all the different directions are
explored uniformly, appearing as a more-or-less
circular wavefront as Dijkstra's algorithm uses a

heuristic identically equal to 0.

Let the node at which we are starting be called the initial node. Let the
distance of node Y be the distance from the initial node to Y.
Dijkstra's algorithm will assign some initial distance values and will try
to improve them step by step.

1.1. Assign to every node a tentative distance value: set it to zero for our
initial node and to infinity for all other nodes.

2. Mark all nodes unvisited. Set the initial node as current. Create a set
of the unvisited nodes called the unvisited set consisting of all the
nodes.

3. For the current node, consider all of its unvisited neighbors and
calculate their tentative distances. For example, if the current node
A is marked with a distance of 6, and the edge connecting it with a
neighbor B has length 2, then the distance to B (through A) will be 6
+ 2 = 8. If this distance is less than the previously recorded tentative
distance of B, then overwrite that distance. Even though a neighbor
has been examined, it is not marked as "visited" at this time, and it
remains in the unvisited set.

4. When we are done considering all of the neighbors of the current
node, mark the current node as visited and remove it from the
unvisited set. A visited node will never be checked again.

5. If the destination node has been marked visited (when planning a route between two specific nodes) or if the
smallest tentative distance among the nodes in the unvisited set is infinity (when planning a complete traversal;
occurs when there is no connection between the initial node and remaining unvisited nodes), then stop. The
algorithm has finished.

6.6. Select the unvisited node that is marked with the smallest tentative distance, and set it as the new "current node"
then go back to step 3.

Description
Note: For ease of understanding, this discussion uses the terms intersection, road and map — however,
formally these terms are vertex, edge and graph, respectively.

Suppose you would like to find the shortest path between two intersections on a city map, a starting point and a
destination. The order is conceptually simple: to start, mark the distance to every intersection on the map with
infinity. This is done not to imply there is an infinite distance, but to note that that intersection has not yet been
visited; some variants of this method simply leave the intersection unlabeled. Now, at each iteration, select a current
intersection. For the first iteration the current intersection will be the starting point and the distance to it (the
intersection's label) will be zero. For subsequent iterations (after the first) the current intersection will be the closest
unvisited intersection to the starting point—this will be easy to find.
From the current intersection, update the distance to every unvisited intersection that is directly connected to it. This
is done by determining the sum of the distance between an unvisited intersection and the value of the current
intersection, and relabeling the unvisited intersection with this value if it is less than its current value. In effect, the
intersection is relabeled if the path to it through the current intersection is shorter than the previously known paths.
To facilitate shortest path identification, in pencil, mark the road with an arrow pointing to the relabeled intersection
if you label/relabel it, and erase all others pointing to it. After you have updated the distances to each neighboring
intersection, mark the current intersection as visited and select the unvisited intersection with lowest distance (from

http://en.wikipedia.org/w/index.php?title=Robotics
http://en.wikipedia.org/w/index.php?title=Motion_planning
http://en.wikipedia.org/w/index.php?title=Motion_planning
http://en.wikipedia.org/w/index.php?title=Wavefront
http://en.wikipedia.org/w/index.php?title=Consistent_heuristic
http://en.wikipedia.org/w/index.php?title=File%3ADijkstras_progress_animation.gif
http://en.wikipedia.org/w/index.php?title=Intersection_%28road%29
http://en.wikipedia.org/w/index.php?title=Graph_labeling
http://en.wikipedia.org/w/index.php?title=Neighbourhood_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Neighbourhood_%28graph_theory%29

Dijkstra's algorithm 4

the starting point) – or lowest label—as the current intersection. Nodes marked as visited are labeled with the
shortest path from the starting point to it and will not be revisited or returned to.
Continue this process of updating the neighboring intersections with the shortest distances, then marking the current
intersection as visited and moving onto the closest unvisited intersection until you have marked the destination as
visited. Once you have marked the destination as visited (as is the case with any visited intersection) you have
determined the shortest path to it, from the starting point, and can trace your way back, following the arrows in
reverse.
Of note is the fact that this algorithm makes no attempt to direct "exploration" towards the destination as one might
expect. Rather, the sole consideration in determining the next "current" intersection is its distance from the starting
point. This algorithm therefore "expands outward" from the starting point, iteratively considering every node that is
closer in terms of shortest path distance until it reaches the destination. When understood in this way, it is clear how
the algorithm necessarily finds the shortest path, however it may also reveal one of the algorithm's weaknesses: its
relative slowness in some topologies.

Pseudocode
In the following algorithm, the code u := vertex in Q with smallest dist[], searches for the vertex
u in the vertex set Q that has the least dist[u] value. That vertex is removed from the set Q and returned to the
user. dist_between(u, v) calculates the length between the two neighbor-nodes u and v. The variable alt
on lines 20 & 22 is the length of the path from the root node to the neighbor node v if it were to go through u. If this
path is shorter than the current shortest path recorded for v, that current path is replaced with this alt path. The
previous array is populated with a pointer to the "next-hop" node on the source graph to get the shortest route to
the source.

1 function Dijkstra(Graph, source):

 2 for each vertex v in Graph: // Initializations

 3 dist[v] := infinity ; // Unknown distance function from

 4 // source to v

 5 previous[v] := undefined ; // Previous node in optimal path

 6 end for // from source

 7

 8 dist[source] := 0 ; // Distance from source to source

 9 Q := the set of all nodes in Graph ; // All nodes in the graph are

10 // unoptimized – thus are in Q

11 while Q is not empty: // The main loop

12 u := vertex in Q with smallest distance in dist[] ; // Source node in first case

13 remove u from Q ;

14 if dist[u] = infinity:

15 break ; // all remaining vertices are

16 end if // inaccessible from source

17

18 for each neighbor v of u: // where v has not yet been

19 // removed from Q.

20 alt := dist[u] + dist_between(u, v) ;

21 if alt < dist[v]: // Relax (u,v,a)

22 dist[v] := alt ;

23 previous[v] := u ;

24 decrease-key v in Q; // Reorder v in the Queue

Dijkstra's algorithm 5

25 end if

26 end for

27 end while

28 return dist;

29 endfunction

If we are only interested in a shortest path between vertices source and target, we can terminate the search at
line 13 if u = target. Now we can read the shortest path from source to target by reverse iteration:

1 S := empty sequence

2 u := target

3 while previous[u] is defined: // Construct the shortest path with a stack S

4 insert u at the beginning of S // Push the vertex into the stack

5 u := previous[u] // Traverse from target to source

6 end while ;

Now sequence S is the list of vertices constituting one of the shortest paths from source to target, or the
empty sequence if no path exists.
A more general problem would be to find all the shortest paths between source and target (there might be
several different ones of the same length). Then instead of storing only a single node in each entry of previous[]
we would store all nodes satisfying the relaxation condition. For example, if both r and source connect to
target and both of them lie on different shortest paths through target (because the edge cost is the same in
both cases), then we would add both r and source to previous[target]. When the algorithm completes,
previous[] data structure will actually describe a graph that is a subset of the original graph with some edges
removed. Its key property will be that if the algorithm was run with some starting node, then every path from that
node to any other node in the new graph will be the shortest path between those nodes in the original graph, and all
paths of that length from the original graph will be present in the new graph. Then to actually find all these shortest
paths between two given nodes we would use a path finding algorithm on the new graph, such as depth-first search.

Running time
An upper bound of the running time of Dijkstra's algorithm on a graph with edges and vertices can be
expressed as a function of and using big-O notation.

For any implementation of vertex set the running time is in , where and
are times needed to perform decrease key and extract minimum operations in set , respectively.

The simplest implementation of the Dijkstra's algorithm stores vertices of set in an ordinary linked list or array,
and extract minimum from is simply a linear search through all vertices in . In this case, the running time is

.
For sparse graphs, that is, graphs with far fewer than edges, Dijkstra's algorithm can be implemented more
efficiently by storing the graph in the form of adjacency lists and using a self-balancing binary search tree, binary
heap, pairing heap, or Fibonacci heap as a priority queue to implement extracting minimum efficiently. With a
self-balancing binary search tree or binary heap, the algorithm requires time (which is
dominated by , assuming the graph is connected). To avoid O(|V|) look-up in decrease-key step on
a vanilla binary heap, it is necessary to maintain a supplementary index mapping each vertex to the heap's index (and
keep it up to date as priority queue changes), making it take only time instead. The Fibonacci heap
improves this to .Note that for directed acyclic graphs, it is possible to find shortest paths from a given starting vertex in linear time,
by processing the vertices in a topological order, and calculating the path length for each vertex to be the minimum

http://en.wikipedia.org/w/index.php?title=Depth-first_search
http://en.wikipedia.org/w/index.php?title=Big_O_notation%23Graph_theory
http://en.wikipedia.org/w/index.php?title=Sparse_graph
http://en.wikipedia.org/w/index.php?title=Adjacency_list
http://en.wikipedia.org/w/index.php?title=Self-balancing_binary_search_tree
http://en.wikipedia.org/w/index.php?title=Binary_heap
http://en.wikipedia.org/w/index.php?title=Binary_heap
http://en.wikipedia.org/w/index.php?title=Pairing_heap
http://en.wikipedia.org/w/index.php?title=Fibonacci_heap
http://en.wikipedia.org/w/index.php?title=Priority_queue
http://en.wikipedia.org/w/index.php?title=Fibonacci_heap
http://en.wikipedia.org/w/index.php?title=Directed_acyclic_graph

Dijkstra's algorithm 6

length obtained via any of its incoming edges.[1]

Related problems and algorithms
The functionality of Dijkstra's original algorithm can be extended with a variety of modifications. For example,
sometimes it is desirable to present solutions which are less than mathematically optimal. To obtain a ranked list of
less-than-optimal solutions, the optimal solution is first calculated. A single edge appearing in the optimal solution is
removed from the graph, and the optimum solution to this new graph is calculated. Each edge of the original solution
is suppressed in turn and a new shortest-path calculated. The secondary solutions are then ranked and presented after
the first optimal solution.
Dijkstra's algorithm is usually the working principle behind link-state routing protocols, OSPF and IS-IS being the
most common ones.
Unlike Dijkstra's algorithm, the Bellman–Ford algorithm can be used on graphs with negative edge weights, as long
as the graph contains no negative cycle reachable from the source vertex s. The presence of such cycles means there
is no shortest path, since the total weight becomes lower each time the cycle is traversed.
The A* algorithm is a generalization of Dijkstra's algorithm that cuts down on the size of the subgraph that must be
explored, if additional information is available that provides a lower bound on the "distance" to the target. This
approach can be viewed from the perspective of linear programming: there is a natural linear program for computing
shortest paths, and solutions to its dual linear program are feasible if and only if they form a consistent heuristic
(speaking roughly, since the sign conventions differ from place to place in the literature). This feasible dual /
consistent heuristic defines a non-negative reduced cost and A* is essentially running Dijkstra's algorithm with these
reduced costs. If the dual satisfies the weaker condition of admissibility, then A* is instead more akin to the
Bellman–Ford algorithm.
The process that underlies Dijkstra's algorithm is similar to the greedy process used in Prim's algorithm. Prim's
purpose is to find a minimum spanning tree that connects all nodes in the graph; Dijkstra is concerned with only two
nodes. Prim's does not evaluate the total weight of the path from the starting node, only the individual path.
Breadth-first search can be viewed as a special-case of Dijkstra's algorithm on unweighted graphs, where the priority
queue degenerates into a FIFO queue.

Dynamic programming perspective
From a dynamic programming point of view, Dijkstra's algorithm is a successive approximation scheme that solves
the dynamic programming functional equation for the shortest path problem by the Reaching method.[2]

In fact, Dijkstra's explanation of the logic behind the algorithm, namely

Problem 2. Find the path of minimum total length between two given nodes and .
We use the fact that, if is a node on the minimal path from to , knowledge of the latter implies the
knowledge of the minimal path from to .

is a paraphrasing of Bellman's famous Principle of Optimality in the context of the shortest path problem.

http://en.wikipedia.org/w/index.php?title=Link-state_routing_protocol
http://en.wikipedia.org/w/index.php?title=OSPF
http://en.wikipedia.org/w/index.php?title=IS-IS
http://en.wikipedia.org/w/index.php?title=Negative_cycle
http://en.wikipedia.org/w/index.php?title=A-star_algorithm
http://en.wikipedia.org/w/index.php?title=Linear_programming
http://en.wikipedia.org/w/index.php?title=Shortest_path_problem%23Linear_programming_formulation
http://en.wikipedia.org/w/index.php?title=Shortest_path_problem%23Linear_programming_formulation
http://en.wikipedia.org/w/index.php?title=Dual_linear_program
http://en.wikipedia.org/w/index.php?title=Consistent_heuristic
http://en.wikipedia.org/w/index.php?title=Reduced_cost
http://en.wikipedia.org/w/index.php?title=Admissible_heuristic
http://en.wikipedia.org/w/index.php?title=Prim%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Minimum_spanning_tree
http://en.wikipedia.org/w/index.php?title=Breadth-first_search
http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Richard_Bellman
http://en.wikipedia.org/w/index.php?title=Principle_of_Optimality

Dijkstra's algorithm 7

Notes
[1] http:/ / www. boost. org/ doc/ libs/ 1_44_0/ libs/ graph/ doc/ dag_shortest_paths. html
[2] Online version of the paper with interactive computational modules. (http:/ / www. ifors. ms. unimelb. edu. au/ tutorial/ dijkstra_new/ index.

html)

References
• Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs" (http:/ / www-m3. ma. tum. de/ twiki/

pub/ MN0506/ WebHome/ dijkstra. pdf). Numerische Mathematik 1: 269–271. doi: 10.1007/BF01386390 (http:/ /
dx. doi. org/ 10. 1007/ BF01386390).

• Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 24.3: Dijkstra's
algorithm". Introduction to Algorithms (Second ed.). MIT Press and McGraw–Hill. pp. 595–601.
ISBN 0-262-03293-7.

• Fredman, Michael Lawrence; Tarjan, Robert E. (1984). "Fibonacci heaps and their uses in improved network
optimization algorithms" (http:/ / www. computer. org/ portal/ web/ csdl/ doi/ 10. 1109/ SFCS. 1984. 715934).
25th Annual Symposium on Foundations of Computer Science. IEEE. pp. 338–346. doi:
10.1109/SFCS.1984.715934 (http:/ / dx. doi. org/ 10. 1109/ SFCS. 1984. 715934).

• Fredman, Michael Lawrence; Tarjan, Robert E. (1987). "Fibonacci heaps and their uses in improved network
optimization algorithms" (http:/ / portal. acm. org/ citation. cfm?id=28874). Journal of the Association for
Computing Machinery 34 (3): 596–615. doi: 10.1145/28869.28874 (http:/ / dx. doi. org/ 10. 1145/ 28869. 28874).

• Zhan, F. Benjamin; Noon, Charles E. (February 1998). "Shortest Path Algorithms: An Evaluation Using Real
Road Networks". Transportation Science 32 (1): 65–73. doi: 10.1287/trsc.32.1.65 (http:/ / dx. doi. org/ 10. 1287/
trsc. 32. 1. 65).

• Leyzorek, M.; Gray, R. S.; Johnson, A. A.; Ladew, W. C.; Meaker, Jr., S. R.; Petry, R. M.; Seitz, R. N. (1957).
Investigation of Model Techniques — First Annual Report — 6 June 1956 — 1 July 1957 — A Study of Model
Techniques for Communication Systems. Cleveland, Ohio: Case Institute of Technology.

• Knuth, D.E. (1977). "A Generalization of Dijkstra's Algorithm". Information Processing Letters 6 (1): 1–5.

External links
•• C/C++

• Dijkstra's Algorithm in C++ (https:/ / github. com/ xtaci/ algorithms/ blob/ master/ include/ dijkstra. h)
• Implementation in Boost C++ library (http:/ / www. boost. org/ doc/ libs/ 1_43_0/ libs/ graph/ doc/

dijkstra_shortest_paths. html)
• Dijkstra's Algorithm in C Programming Language (http:/ / www. rawbytes. com/ dijkstras-algorithm-in-c/)

•• Java
• Applet by Carla Laffra of Pace University (http:/ / www. dgp. toronto. edu/ people/ JamesStewart/ 270/ 9798s/

Laffra/ DijkstraApplet. html)
• Visualization of Dijkstra's Algorithm (http:/ / students. ceid. upatras. gr/ ~papagel/ english/ java_docs/

minDijk. htm)
• Shortest Path Problem: Dijkstra's Algorithm (http:/ / www-b2. is. tokushima-u. ac. jp/ ~ikeda/ suuri/ dijkstra/

Dijkstra. shtml)
• Dijkstra's Algorithm Applet (http:/ / www. unf. edu/ ~wkloster/ foundations/ DijkstraApplet/ DijkstraApplet.

htm)
• Open Source Java Graph package with implementation of Dijkstra's Algorithm (http:/ / code. google. com/ p/

annas/)
• A Java library for path finding with Dijkstra's Algorithm and example Applet (http:/ / www. stackframe. com/

software/ PathFinder)

http://www.boost.org/doc/libs/1_44_0/libs/graph/doc/dag_shortest_paths.html
http://www.ifors.ms.unimelb.edu.au/tutorial/dijkstra_new/index.html
http://www.ifors.ms.unimelb.edu.au/tutorial/dijkstra_new/index.html
http://en.wikipedia.org/w/index.php?title=Edsger_W._Dijkstra
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1007%2FBF01386390
http://dx.doi.org/10.1007%2FBF01386390
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ronald_L._Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=MIT_Press
http://en.wikipedia.org/w/index.php?title=McGraw%E2%80%93Hill
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-262-03293-7
http://en.wikipedia.org/w/index.php?title=Michael_Fredman
http://en.wikipedia.org/w/index.php?title=Robert_Tarjan
http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.1984.715934
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1109%2FSFCS.1984.715934
http://en.wikipedia.org/w/index.php?title=Michael_Fredman
http://en.wikipedia.org/w/index.php?title=Robert_Tarjan
http://portal.acm.org/citation.cfm?id=28874
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F28869.28874
http://en.wikipedia.org/w/index.php?title=Transportation_Science
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1287%2Ftrsc.32.1.65
http://dx.doi.org/10.1287%2Ftrsc.32.1.65
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Information_Processing_Letters
https://github.com/xtaci/algorithms/blob/master/include/dijkstra.h
http://www.boost.org/doc/libs/1_43_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.boost.org/doc/libs/1_43_0/libs/graph/doc/dijkstra_shortest_paths.html
http://www.rawbytes.com/dijkstras-algorithm-in-c/
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html
http://students.ceid.upatras.gr/~papagel/english/java_docs/minDijk.htm
http://students.ceid.upatras.gr/~papagel/english/java_docs/minDijk.htm
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml
http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://code.google.com/p/annas/
http://code.google.com/p/annas/
http://www.stackframe.com/software/PathFinder
http://www.stackframe.com/software/PathFinder

Dijkstra's algorithm 8

• Dijkstra's algorithm as bidirectional version in Java (https:/ / github. com/ graphhopper/ graphhopper/ tree/
90879ad05c4dfedf0390d44525065f727b043357/ core/ src/ main/ java/ com/ graphhopper/ routing)

•• C#/.Net
• Dijkstra's Algorithm in C# (http:/ / www. codeproject. com/ KB/ recipes/ ShortestPathCalculation. aspx)
• Fast Priority Queue Implementation of Dijkstra's Algorithm in C# (http:/ / www. codeproject. com/ KB/

recipes/ FastHeapDijkstra. aspx)
• QuickGraph, Graph Data Structures and Algorithms for .NET (http:/ / quickgraph. codeplex. com/)

• Dijkstra's Algorithm Simulation (http:/ / optlab-server. sce. carleton. ca/ POAnimations2007/ DijkstrasAlgo. html)
• Oral history interview with Edsger W. Dijkstra (http:/ / purl. umn. edu/ 107247), Charles Babbage Institute

University of Minnesota, Minneapolis.
• Animation of Dijkstra's algorithm (http:/ / www. cs. sunysb. edu/ ~skiena/ combinatorica/ animations/ dijkstra.

html)
• Haskell implementation of Dijkstra's Algorithm (http:/ / bonsaicode. wordpress. com/ 2011/ 01/ 04/

programming-praxis-dijkstra’s-algorithm/) on Bonsai code
• Implementation in T-SQL (http:/ / hansolav. net/ sql/ graphs. html)
• A MATLAB program for Dijkstra's algorithm (http:/ / www. mathworks. com/ matlabcentral/ fileexchange/

20025-advanced-dijkstras-minimum-path-algorithm)
• Step through Dijkstra's Algorithm in an online JavaScript Debugger (http:/ / www. turb0js. com/ a/

Dijkstra's_Algorithm)

https://github.com/graphhopper/graphhopper/tree/90879ad05c4dfedf0390d44525065f727b043357/core/src/main/java/com/graphhopper/routing
https://github.com/graphhopper/graphhopper/tree/90879ad05c4dfedf0390d44525065f727b043357/core/src/main/java/com/graphhopper/routing
http://www.codeproject.com/KB/recipes/ShortestPathCalculation.aspx
http://www.codeproject.com/KB/recipes/FastHeapDijkstra.aspx
http://www.codeproject.com/KB/recipes/FastHeapDijkstra.aspx
http://quickgraph.codeplex.com/
http://optlab-server.sce.carleton.ca/POAnimations2007/DijkstrasAlgo.html
http://purl.umn.edu/107247
http://en.wikipedia.org/w/index.php?title=Charles_Babbage_Institute
http://www.cs.sunysb.edu/~skiena/combinatorica/animations/dijkstra.html
http://www.cs.sunysb.edu/~skiena/combinatorica/animations/dijkstra.html
http://bonsaicode.wordpress.com/2011/01/04/programming-praxis-dijkstra�s-algorithm/
http://bonsaicode.wordpress.com/2011/01/04/programming-praxis-dijkstra�s-algorithm/
http://hansolav.net/sql/graphs.html
http://www.mathworks.com/matlabcentral/fileexchange/20025-advanced-dijkstras-minimum-path-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/20025-advanced-dijkstras-minimum-path-algorithm
http://www.turb0js.com/a/Dijkstra%27s_Algorithm
http://www.turb0js.com/a/Dijkstra%27s_Algorithm

BellmanFord algorithm 9

Bellman–Ford algorithm

Bellman–Ford algorithm

Class Single-source shortest path problem (for weighted directed graphs)

Data structure Graph

Worst case performance

Worst case space complexity

Graph and tree
search

algorithms
• α–β
•• A*
•• B*
•• Backtracking
•• Beam
• Bellman–Ford
•• Best-first
•• Bidirectional
•• Borůvka
• Branch & bound
•• BFS
•• British Museum
•• D*
•• DFS
•• Depth-limited
•• Dijkstra
•• Edmonds
• Floyd–Warshall
•• Fringe search
•• Hill climbing
•• IDA*
•• Iterative deepening
•• Kruskal
•• Johnson
•• Lexicographic BFS
•• Prim
•• SMA*
•• Uniform-cost

Listings

•• Graph algorithms
•• Search algorithms
•• List of graph algorithms

Related topics

http://en.wikipedia.org/w/index.php?title=Single-source_shortest_path_problem
http://en.wikipedia.org/w/index.php?title=Graph_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Graph_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta_pruning
http://en.wikipedia.org/w/index.php?title=A%2A_search_algorithm
http://en.wikipedia.org/w/index.php?title=B%2A
http://en.wikipedia.org/w/index.php?title=Backtracking
http://en.wikipedia.org/w/index.php?title=Beam_search
http://en.wikipedia.org/w/index.php?title=Best-first_search
http://en.wikipedia.org/w/index.php?title=Bidirectional_search
http://en.wikipedia.org/w/index.php?title=Bor%C5%AFvka%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Branch_and_bound
http://en.wikipedia.org/w/index.php?title=Breadth-first_search
http://en.wikipedia.org/w/index.php?title=British_Museum_algorithm
http://en.wikipedia.org/w/index.php?title=D%2A
http://en.wikipedia.org/w/index.php?title=Depth-first_search
http://en.wikipedia.org/w/index.php?title=Depth-limited_search
http://en.wikipedia.org/w/index.php?title=Edmonds%27_algorithm
http://en.wikipedia.org/w/index.php?title=Fringe_search
http://en.wikipedia.org/w/index.php?title=Hill_climbing
http://en.wikipedia.org/w/index.php?title=IDA%2A
http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=Kruskal%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Lexicographic_breadth-first_search
http://en.wikipedia.org/w/index.php?title=Prim%27s_algorithm
http://en.wikipedia.org/w/index.php?title=SMA%2A
http://en.wikipedia.org/w/index.php?title=Uniform-cost_search
http://en.wikipedia.org/w/index.php?title=Category:Graph_algorithms
http://en.wikipedia.org/w/index.php?title=Category:Search_algorithms
http://en.wikipedia.org/w/index.php?title=List_of_algorithms%23Graph_algorithms

BellmanFord algorithm 10

•• Dynamic programming
•• Graph traversal
•• Tree traversal
• Search games

The Bellman–Ford algorithm is an algorithm that computes shortest paths from a single source vertex to all of the
other vertices in a weighted digraph. It is slower than Dijkstra's algorithm for the same problem, but more versatile,
as it is capable of handling graphs in which some of the edge weights are negative numbers. The algorithm is usually
named after two of its developers, Richard Bellman and Lester Ford, Jr., who published it in 1958 and 1956,
respectively; however, Edward F. Moore also published the same algorithm in 1957, and for this reason it is also
sometimes called the Bellman–Ford–Moore algorithm.
Negative edge weights are found in various applications of graphs, hence the usefulness of this algorithm.[1] If a
graph contains a "negative cycle", i.e., a cycle whose edges sum to a negative value, then there is no cheapest path,
because any path can be made cheaper by one more walk through the negative cycle. In such a case, the
Bellman–Ford algorithm can detect negative cycles and report their existence, but it cannot produce a correct
"shortest path" answer if a negative cycle is reachable from the source.[2]

Algorithm

In this example graph, assuming that A is the
source and edges are processed in the worst order,

from right to left, it requires the full |V|−1 or 4
iterations for the distance estimates to converge.
Conversely, if the edges are processed in the best
order, from left to right, the algorithm converges

in a single iteration.

Like Dijkstra's Algorithm, Bellman–Ford is based on the principle of
relaxation, in which an approximation to the correct distance is
gradually replaced by more accurate values until eventually reaching
the optimum solution. In both algorithms, the approximate distance to
each vertex is always an overestimate of the true distance, and is
replaced by the minimum of its old value with the length of a newly
found path. However, Dijkstra's algorithm greedily selects the
minimum-weight node that has not yet been processed, and performs
this relaxation process on all of its outgoing edges; in contrast, the
Bellman–Ford algorithm simply relaxes all the edges, and does this |V
| − 1 times, where |V | is the number of vertices in the graph. In each of
these repetitions, the number of vertices with correctly calculated
distances grows, from which it follows that eventually all vertices will
have their correct distances. This method allows the Bellman–Ford
algorithm to be applied to a wider class of inputs than Dijkstra.

Bellman–Ford runs in O(|V|·|E|) time, where |V| and |E| are the number
of vertices and edges respectively.

procedure BellmanFord(list vertices, list edges, vertex source)

 // This implementation takes in a graph, represented as lists of vertices and edges,

 // and fills two arrays (distance and predecessor) with shortest-path information

 // Step 1: initialize graph

 for each vertex v in vertices:

 if v is source then distance[v] := 0

 else distance[v] := infinity

 predecessor[v] := null

http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Graph_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Search_game
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Shortest_path
http://en.wikipedia.org/w/index.php?title=Vertex_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Weighted_digraph
http://en.wikipedia.org/w/index.php?title=Richard_Bellman
http://en.wikipedia.org/w/index.php?title=L._R._Ford%2C_Jr.
http://en.wikipedia.org/w/index.php?title=Edward_F._Moore
http://en.wikipedia.org/w/index.php?title=Cycle_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Walk_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=File%3ABellman-Ford_worst-case_example.svg
http://en.wikipedia.org/w/index.php?title=Dijkstra%27s_Algorithm
http://en.wikipedia.org/w/index.php?title=Relaxation_%28iterative_method%29
http://en.wikipedia.org/w/index.php?title=Greedy_algorithm
http://en.wikipedia.org/w/index.php?title=Big_O_notation

BellmanFord algorithm 11

 // Step 2: relax edges repeatedly

 for i from 1 to size(vertices)-1:

 for each edge (u, v) with weight w in edges:

 if distance[u] + w < distance[v]:

 distance[v] := distance[u] + w

 predecessor[v] := u

 // Step 3: check for negative-weight cycles

 for each edge (u, v) with weight w in edges:

 if distance[u] + w < distance[v]:

 error "Graph contains a negative-weight cycle"

Proof of correctness
The correctness of the algorithm can be shown by induction. The precise statement shown by induction is:
Lemma. After i repetitions of for cycle:
• If Distance(u) is not infinity, it is equal to the length of some path from s to u;
• If there is a path from s to u with at most i edges, then Distance(u) is at most the length of the shortest path from s

to u with at most i edges.
Proof. For the base case of induction, consider i=0 and the moment before for cycle is executed for the first time.
Then, for the source vertex, source.distance = 0, which is correct. For other vertices u, u.distance =
infinity, which is also correct because there is no path from source to u with 0 edges.
For the inductive case, we first prove the first part. Consider a moment when a vertex's distance is updated by
v.distance := u.distance + uv.weight. By inductive assumption, u.distance is the length of
some path from source to u. Then u.distance + uv.weight is the length of the path from source to v that
follows the path from source to u and then goes to v.
For the second part, consider the shortest path from source to u with at most i edges. Let v be the last vertex before u
on this path. Then, the part of the path from source to v is the shortest path from source to v with at most i-1 edges.
By inductive assumption, v.distance after i−1 cycles is at most the length of this path. Therefore, uv.weight
+ v.distance is at most the length of the path from s to u. In the ith cycle, u.distance gets compared with
uv.weight + v.distance, and is set equal to it if uv.weight + v.distance was smaller. Therefore,
after i cycles, u.distance is at most the length of the shortest path from source to u that uses at most i edges.
If there are no negative-weight cycles, then every shortest path visits each vertex at most once, so at step 3 no further
improvements can be made. Conversely, suppose no improvement can be made. Then for any cycle with vertices
v[0], ..., v[k−1],
v[i].distance <= v[(i-1) mod k].distance + v[(i-1) mod k]v[i].weight

Summing around the cycle, the v[i].distance terms and the v[i−1 (mod k)] distance terms cancel, leaving
0 <= sum from 1 to k of v[i-1 (mod k)]v[i].weight

I.e., every cycle has nonnegative weight.

http://en.wikipedia.org/w/index.php?title=Mathematical_induction

BellmanFord algorithm 12

Finding negative cycles
When the algorithm is used to find shortest paths, the existence of negative cycles is a problem, preventing the
algorithm from finding a correct answer. However, since it terminates upon finding a negative cycle, the
Bellman–Ford algorithm can be used for applications in which this is the target to be sought - for example in
cycle-cancelling techniques in network flow analysis.

Applications in routing
A distributed variant of the Bellman–Ford algorithm is used in distance-vector routing protocols, for example the
Routing Information Protocol (RIP). The algorithm is distributed because it involves a number of nodes (routers)
within an Autonomous system, a collection of IP networks typically owned by an ISP. It consists of the following
steps:
1.1. Each node calculates the distances between itself and all other nodes within the AS and stores this information as

a table.
2.2. Each node sends its table to all neighboring nodes.
3.3. When a node receives distance tables from its neighbors, it calculates the shortest routes to all other nodes and

updates its own table to reflect any changes.
The main disadvantages of the Bellman–Ford algorithm in this setting are as follows:
•• It does not scale well.
• Changes in network topology are not reflected quickly since updates are spread node-by-node.
• Count to infinity (if link or node failures render a node unreachable from some set of other nodes, those nodes

may spend forever gradually increasing their estimates of the distance to it, and in the meantime there may be
routing loops).

Improvements
The Bellman–Ford algorithm may be improved in practice (although not in the worst case) by the observation that, if
an iteration of the main loop of the algorithm terminates without making any changes, the algorithm can be
immediately terminated, as subsequent iterations will not make any more changes. With this early termination
condition, the main loop may in some cases use many fewer than |V| − 1 iterations, even though the worst case of the
algorithm remains unchanged.
Yen (1970) described two more improvements to the Bellman–Ford algorithm for a graph without negative-weight
cycles; again, while making the algorithm faster in practice, they do not change its O(|V|*|E|) worst case time bound.
His first improvement reduces the number of relaxation steps that need to be performed within each iteration of the
algorithm. If a vertex v has a distance value that has not changed since the last time the edges out of v were relaxed,
then there is no need to relax the edges out of v a second time. In this way, as the number of vertices with correct
distance values grows, the number whose outgoing edges need to be relaxed in each iteration shrinks, leading to a
constant-factor savings in time for dense graphs.
Yen's second improvement first assigns some arbitrary linear order on all vertices and then partitions the set of all
edges into two subsets. The first subset, Ef, contains all edges (vi, vj) such that i < j; the second, Eb, contains edges
(vi, vj) such that i > j. Each vertex is visited in the order v1, v2, ..., v|V|, relaxing each outgoing edge from that vertex
in Ef. Each vertex is then visited in the order v|V|, v|V|−1, ..., v1, relaxing each outgoing edge from that vertex in Eb.
Each iteration of the main loop of the algorithm, after the first one, adds at least two edges to the set of edges whose
relaxed distances match the correct shortest path distances: one from Ef and one from Eb. This modification reduces
the worst-case number of iterations of the main loop of the algorithm from |V| − 1 to |V|/2.[3]

Another improvement, by Bannister & Eppstein (2012), replaces the arbitrary linear order of the vertices used in
Yen's second improvement by a random permutation. This change makes the worst case for Yen's improvement (in

http://en.wikipedia.org/w/index.php?title=Cycle-cancelling
http://en.wikipedia.org/w/index.php?title=Flow_network
http://en.wikipedia.org/w/index.php?title=Distance-vector_routing_protocol
http://en.wikipedia.org/w/index.php?title=Routing_Information_Protocol
http://en.wikipedia.org/w/index.php?title=Autonomous_system_%28Internet%29
http://en.wikipedia.org/w/index.php?title=Network_topology
http://en.wikipedia.org/w/index.php?title=Count_to_infinity%23Count-to-infinity_problem
http://en.wikipedia.org/w/index.php?title=Dense_graph
http://en.wikipedia.org/w/index.php?title=Random_permutation

BellmanFord algorithm 13

which the edges of a shortest path strictly alternate between the two subsets Ef and Eb) very unlikely to happen. With
a randomly permuted vertex ordering, the expected number of iterations needed in the main loop is at most |V|/3.[]

Notes
[1][1] Sedgewick (2002).
[2] Kleinberg & Tardos (2006).
[3] Cormen et al., 2nd ed., Problem 24-1, pp. 614–615.

References

Original sources
• Bellman, Richard (1958). "On a routing problem". Quarterly of Applied Mathematics 16: 87–90. MR 0102435

(http:/ / www. ams. org/ mathscinet-getitem?mr=0102435).
• Ford Jr., Lester R. (August 14, 1956). Network Flow Theory (http:/ / www. rand. org/ pubs/ papers/ P923. html).

Paper P-923. Santa Monica, California: RAND Corporation.
• Moore, Edward F. (1959). "The shortest path through a maze". Proc. Internat. Sympos. Switching Theory 1957,

Part II. Cambridge, Mass.: Harvard Univ. Press. pp. 285–292. MR 0114710 (http:/ / www. ams. org/
mathscinet-getitem?mr=0114710).

• Yen, Jin Y. (1970). "An algorithm for finding shortest routes from all source nodes to a given destination in
general networks". Quarterly of Applied Mathematics 27: 526–530. MR 0253822 (http:/ / www. ams. org/
mathscinet-getitem?mr=0253822).

• Bannister, M. J.; Eppstein, D. (2012). "Randomized speedup of the Bellman–Ford algorithm" (http:/ / siam.
omnibooksonline. com/ 2012ANALCO/ data/ papers/ 005. pdf). Analytic Algorithmics and Combinatorics
(ANALCO12), Kyoto, Japan. pp. 41–47. arXiv: 1111.5414 (http:/ / arxiv. org/ abs/ 1111. 5414).

Secondary sources
• Bang-Jensen, Jørgen; Gutin, Gregory (2000). "Section 2.3.4: The Bellman-Ford-Moore algorithm" (http:/ / www.

cs. rhul. ac. uk/ books/ dbook/). Digraphs: Theory, Algorithms and Applications (First ed.).
ISBN 978-1-84800-997-4.

• Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L.. Introduction to Algorithms. MIT Press and
McGraw-Hill., Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 24.1: The
Bellman–Ford algorithm, pp. 588–592. Problem 24-1, pp. 614–615. Third Edition. MIT Press, 2009. ISBN
978-0-262-53305-8. Section 24.1: The Bellman–Ford algorithm, pp. 651–655.

• Heineman, George T.; Pollice, Gary; Selkow, Stanley (2008). "Chapter 6: Graph Algorithms". Algorithms in a
Nutshell. O'Reilly Media. pp. 160–164. ISBN 978-0-596-51624-6.

• Kleinberg, Jon; Tardos, Éva (2006). Algorithm Design. New York: Pearson Education, Inc.
• Sedgewick, Robert (2002). "Section 21.7: Negative Edge Weights" (http:/ / safari. oreilly. com/ 0201361213/

ch21lev1sec7). Algorithms in Java (3rd ed.). ISBN 0-201-36121-3.

External links
• C++ code example (https:/ / github. com/ xtaci/ algorithms/ blob/ master/ include/ bellman_ford. h)
• Open Source Java Graph package with Bellman-Ford Algorithms (http:/ / code. google. com/ p/ annas/)

http://en.wikipedia.org/w/index.php?title=Expected_value
http://en.wikipedia.org/w/index.php?title=Richard_Bellman
http://en.wikipedia.org/w/index.php?title=Mathematical_Reviews
http://www.ams.org/mathscinet-getitem?mr=0102435
http://en.wikipedia.org/w/index.php?title=L._R._Ford%2C_Jr.
http://www.rand.org/pubs/papers/P923.html
http://en.wikipedia.org/w/index.php?title=Edward_F._Moore
http://en.wikipedia.org/w/index.php?title=Mathematical_Reviews
http://www.ams.org/mathscinet-getitem?mr=0114710
http://www.ams.org/mathscinet-getitem?mr=0114710
http://en.wikipedia.org/w/index.php?title=Mathematical_Reviews
http://www.ams.org/mathscinet-getitem?mr=0253822
http://www.ams.org/mathscinet-getitem?mr=0253822
http://en.wikipedia.org/w/index.php?title=David_Eppstein
http://siam.omnibooksonline.com/2012ANALCO/data/papers/005.pdf
http://siam.omnibooksonline.com/2012ANALCO/data/papers/005.pdf
http://en.wikipedia.org/w/index.php?title=ArXiv
http://arxiv.org/abs/1111.5414
http://www.cs.rhul.ac.uk/books/dbook/
http://www.cs.rhul.ac.uk/books/dbook/
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-1-84800-997-4
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ron_Rivest
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=O%27Reilly_Media
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-0-596-51624-6
http://en.wikipedia.org/w/index.php?title=Jon_Kleinberg
http://en.wikipedia.org/w/index.php?title=%C3%89va_Tardos
http://en.wikipedia.org/w/index.php?title=Robert_Sedgewick_%28computer_scientist%29
http://safari.oreilly.com/0201361213/ch21lev1sec7
http://safari.oreilly.com/0201361213/ch21lev1sec7
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-36121-3
https://github.com/xtaci/algorithms/blob/master/include/bellman_ford.h
http://code.google.com/p/annas/

FloydWarshall algorithm 14

Floyd–Warshall algorithm

Floyd–Warshall algorithm

Class All-pairs shortest path problem (for weighted graphs)

Data structure Graph

Worst case performance

Best case performance

Worst case space complexity

Graph and tree
search

algorithms
• α–β
•• A*
•• B*
•• Backtracking
•• Beam
• Bellman–Ford
•• Best-first
•• Bidirectional
•• Borůvka
• Branch & bound
•• BFS
•• British Museum
•• D*
•• DFS
•• Depth-limited
•• Dijkstra
•• Edmonds
• Floyd–Warshall
•• Fringe search
•• Hill climbing
•• IDA*
•• Iterative deepening
•• Kruskal
•• Johnson
•• Lexicographic BFS
•• Prim
•• SMA*
•• Uniform-cost

Listings

•• Graph algorithms
•• Search algorithms
•• List of graph algorithms

Related topics

http://en.wikipedia.org/w/index.php?title=All-pairs_shortest_path_problem
http://en.wikipedia.org/w/index.php?title=Graph_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Graph_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Alpha%E2%80%93beta_pruning
http://en.wikipedia.org/w/index.php?title=A%2A_search_algorithm
http://en.wikipedia.org/w/index.php?title=B%2A
http://en.wikipedia.org/w/index.php?title=Backtracking
http://en.wikipedia.org/w/index.php?title=Beam_search
http://en.wikipedia.org/w/index.php?title=Best-first_search
http://en.wikipedia.org/w/index.php?title=Bidirectional_search
http://en.wikipedia.org/w/index.php?title=Bor%C5%AFvka%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Branch_and_bound
http://en.wikipedia.org/w/index.php?title=Breadth-first_search
http://en.wikipedia.org/w/index.php?title=British_Museum_algorithm
http://en.wikipedia.org/w/index.php?title=D%2A
http://en.wikipedia.org/w/index.php?title=Depth-first_search
http://en.wikipedia.org/w/index.php?title=Depth-limited_search
http://en.wikipedia.org/w/index.php?title=Edmonds%27_algorithm
http://en.wikipedia.org/w/index.php?title=Fringe_search
http://en.wikipedia.org/w/index.php?title=Hill_climbing
http://en.wikipedia.org/w/index.php?title=IDA%2A
http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=Kruskal%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Johnson%27s_algorithm
http://en.wikipedia.org/w/index.php?title=Lexicographic_breadth-first_search
http://en.wikipedia.org/w/index.php?title=Prim%27s_algorithm
http://en.wikipedia.org/w/index.php?title=SMA%2A
http://en.wikipedia.org/w/index.php?title=Uniform-cost_search
http://en.wikipedia.org/w/index.php?title=Category:Graph_algorithms
http://en.wikipedia.org/w/index.php?title=Category:Search_algorithms
http://en.wikipedia.org/w/index.php?title=List_of_algorithms%23Graph_algorithms

FloydWarshall algorithm 15

•• Dynamic programming
•• Graph traversal
•• Tree traversal
• Search games

In computer science, the Floyd–Warshall algorithm (also known as Floyd's algorithm, Roy–Warshall algorithm,
Roy–Floyd algorithm, or the WFI algorithm) is a graph analysis algorithm for finding shortest paths in a weighted
graph with positive or negative edge weights (but with no negative cycles, see below) and also for finding transitive
closure of a relation R. A single execution of the algorithm will find the lengths (summed weights) of the shortest
paths between all pairs of vertices, though it does not return details of the paths themselves. The algorithm is an
example of dynamic programming. It was published in its currently recognized form by Robert Floyd in 1962.
However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 and also by Stephen
Warshall in 1962 for finding the transitive closure of a graph. The modern formulation of Warshall's algorithm as
three nested for-loops was first described by Peter Ingerman, also in 1962.

Algorithm
The Floyd–Warshall algorithm compares all possible paths through the graph between each pair of vertices. It is able
to do this with only Θ(|V|3) comparisons in a graph. This is remarkable considering that there may be up to Ω(|V|2)
edges in the graph, and every combination of edges is tested. It does so by incrementally improving an estimate on
the shortest path between two vertices, until the estimate is optimal.
Consider a graph G with vertices V numbered 1 through N. Further consider a function shortestPath(i, j, k) that
returns the shortest possible path from i to j using vertices only from the set {1,2,...,k} as intermediate points along
the way. Now, given this function, our goal is to find the shortest path from each i to each j using only vertices 1
to k + 1.
For each of these pairs of vertices, the true shortest path could be either (1) a path that only uses vertices in the set
{1, ..., k} or (2) a path that goes from i to k + 1 and then from k + 1 to j. We know that the best path from i to j that
only uses vertices 1 through k is defined by shortestPath(i, j, k), and it is clear that if there were a better path from i
to k + 1 to j, then the length of this path would be the concatenation of the shortest path from i to k + 1 (using
vertices in {1, ..., k}) and the shortest path from k + 1 to j (also using vertices in {1, ..., k}).

If is the weight of the edge between vertices i and j, we can define shortestPath(i, j, k + 1) in terms of the
following recursive formula: the base case is

and the recursive case is

This formula is the heart of the Floyd–Warshall algorithm. The algorithm works by first computing
shortestPath(i, j, k) for all (i, j) pairs for k = 1, then k = 2, etc. This process continues until k = n, and we have found
the shortest path for all (i, j) pairs using any intermediate vertices. Pseudocode for this basic version follows:

let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
for each vertex v

 dist[v][v] ← 0
for each edge (u,v)

 dist[u][v] ← w(u,v) // the weight of the edge (u,v)
for k from 1 to |V|

 for i from 1 to |V|

 for j from 1 to |V|

 if dist[i][k] + dist[k][j] < dist[i][j] then

http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Graph_traversal
http://en.wikipedia.org/w/index.php?title=Tree_traversal
http://en.wikipedia.org/w/index.php?title=Search_game
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Graph_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Shortest_path_problem
http://en.wikipedia.org/w/index.php?title=Weighted_graph
http://en.wikipedia.org/w/index.php?title=Weighted_graph
http://en.wikipedia.org/w/index.php?title=Transitive_closure
http://en.wikipedia.org/w/index.php?title=Transitive_closure
http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Robert_Floyd
http://en.wikipedia.org/w/index.php?title=Bernard_Roy
http://en.wikipedia.org/w/index.php?title=Stephen_Warshall
http://en.wikipedia.org/w/index.php?title=Stephen_Warshall
http://en.wikipedia.org/w/index.php?title=Recursion

FloydWarshall algorithm 16

 dist[i][j] ← dist[i][k] + dist[k][j]

Example
The algorithm above is executed on the graph on the left below:

Prior to the first iteration of the outer loop, labelled k=0 above, the only known paths correspond to the single edges
in the graph. At k=1, paths that go through the vertex 1 are found: in particular, the path 2→1→3 is found, replacing
the path 2→3 which has fewer edges but is longer. At k=2, paths going through the vertices {1,2} are found. The red
and blue boxes show how the path 4→2→1→3 is assembled from the two known paths 4→2 and 2→1→3
encountered in previous iterations, with 2 in the intersection. The path 4→2→3 is not considered, because 2→1→3
is the shortest path encountered so far from 2 to 3. At k=3, paths going through the vertices {1,2,3} are found.
Finally, at k=4, all shortest paths are found.

Behavior with negative cycles
A negative cycle is a cycle whose edges sum to a negative value. There is no shortest path between any pair of
vertices i, j which form part of a negative cycle, because path-lengths from i to j can be arbitrarily small (negative).
For numerically meaningful output, the Floyd–Warshall algorithm assumes that there are no negative cycles.
Nevertheless, if there are negative cycles, the Floyd–Warshall algorithm can be used to detect them. The intuition is
as follows:
• The Floyd–Warshall algorithm iteratively revises path lengths between all pairs of vertices (i, j), including where

i = j;
• Initially, the length of the path (i,i) is zero;
• A path {(i,k), (k,i)} can only improve upon this if it has length less than zero, i.e. denotes a negative cycle;
• Thus, after the algorithm, (i,i) will be negative if there exists a negative-length path from i back to i.
Hence, to detect negative cycles using the Floyd–Warshall algorithm, one can inspect the diagonal of the path
matrix, and the presence of a negative number indicates that the graph contains at least one negative cycle.
Obviously, in an undirected graph a negative edge creates a negative cycle (i.e., a closed walk) involving its incident
vertices.

http://en.wikipedia.org/w/index.php?title=File:Floyd-Warshall_example.svg
http://en.wikipedia.org/w/index.php?title=Cycle_%28graph_theory%29

FloydWarshall algorithm 17

Path reconstruction
The Floyd–Warshall algorithm typically only provides the lengths of the paths between all pairs of vertices. With
simple modifications, it is possible to create a method to reconstruct the actual path between any two endpoint
vertices. While one may be inclined to store the actual path from each vertex to each other vertex, this is not
necessary, and in fact, is very costly in terms of memory. For each vertex, one need only store the information about
the highest index intermediate vertex one must pass through if one wishes to arrive at any given vertex. Therefore,
information to reconstruct all paths can be stored in a single |V| × |V| matrix next where next[i][j] represents the
highest index vertex one must travel through if one intends to take the shortest path from i to j.
To implement this, when a new shortest path is found between two vertices, the matrix containing the paths is
updated. The next matrix is updated along with the matrix of minimum distances dist, so at completion both tables
are complete and accurate, and any entries which are infinite in the dist table will be null in the next table. The path
from i to j is the path from i to next[i][j], followed by the path from next[i][j] to j. These two shorter paths are
determined recursively. This modified algorithm runs with the same time and space complexity as the unmodified
algorithm.

let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
let next be a |V| × |V| array of vertex indices initialized to null

procedure FloydWarshallWithPathReconstruction ()

 for each vertex v

 dist[v][v] ← 0
 for each edge (u,v)

 dist[u][v] ← w(u,v) // the weight of the edge (u,v)
 for k from 1 to |V|

 for i from 1 to |V|

 for j from 1 to |V|

 if dist[i][k] + dist[k][j] < dist[i][j] then

 dist[i][j] ← dist[i][k] + dist[k][j]
 next[i][j] ← k

function Path (i, j)

 if dist[i][j] = ∞ then
 return "no path"

 var intermediate ← next[i][j]
 if intermediate = null then

 return " " // the direct edge from i to j gives the shortest path

 else

 return Path(i, intermediate) + intermediate + Path(intermediate, j)

FloydWarshall algorithm 18

Analysis
Let n be |V|, the number of vertices. To find all n2 of shortestPath(i,j,k) (for all i and j) from those of
shortestPath(i,j,k−1) requires 2n2 operations. Since we begin with shortestPath(i,j,0) = edgeCost(i,j) and compute the
sequence of n matrices shortestPath(i,j,1), shortestPath(i,j,2), …, shortestPath(i,j,n), the total number of operations
used is n · 2n2 = 2n3. Therefore, the complexity of the algorithm is Θ(n3).

Applications and generalizations
The Floyd–Warshall algorithm can be used to solve the following problems, among others:
•• Shortest paths in directed graphs (Floyd's algorithm).
• Transitive closure of directed graphs (Warshall's algorithm). In Warshall's original formulation of the algorithm,

the graph is unweighted and represented by a Boolean adjacency matrix. Then the addition operation is replaced
by logical conjunction (AND) and the minimum operation by logical disjunction (OR).

• Finding a regular expression denoting the regular language accepted by a finite automaton (Kleene's algorithm)
• Inversion of real matrices (Gauss–Jordan algorithm)
•• Optimal routing. In this application one is interested in finding the path with the maximum flow between two

vertices. This means that, rather than taking minima as in the pseudocode above, one instead takes maxima. The
edge weights represent fixed constraints on flow. Path weights represent bottlenecks; so the addition operation
above is replaced by the minimum operation.

• Testing whether an undirected graph is bipartite.
• Fast computation of Pathfinder networks.
•• Widest paths/Maximum bandwidth paths

Implementations
Implementations are available for many programming languages.
• For C++, in the boost::graph [1] library
• For C#, at QuickGraph [2]

• For Java, in the Apache Commons Graph [3] library
• For JavaScript, at Turb0JS [4]

• For MATLAB, in the Matlab_bgl [5] package
• For Perl, in the Graph [6] module
• For PHP, on page [7] and PL/pgSQL, on page [8] at Microshell
• For Python, in the NetworkX library
• For R, in package e1017 [9]

• For Ruby, in script [10]

http://en.wikipedia.org/w/index.php?title=Computational_complexity_theory
http://en.wikipedia.org/w/index.php?title=Big_theta
http://en.wikipedia.org/w/index.php?title=Transitive_closure
http://en.wikipedia.org/w/index.php?title=Logical_conjunction
http://en.wikipedia.org/w/index.php?title=Logical_disjunction
http://en.wikipedia.org/w/index.php?title=Regular_expression
http://en.wikipedia.org/w/index.php?title=Regular_language
http://en.wikipedia.org/w/index.php?title=Finite_automaton
http://en.wikipedia.org/w/index.php?title=Invertible_matrix
http://en.wikipedia.org/w/index.php?title=Real_number
http://en.wikipedia.org/w/index.php?title=Matrix_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Gauss%E2%80%93Jordan_elimination
http://en.wikipedia.org/w/index.php?title=Undirected_graph
http://en.wikipedia.org/w/index.php?title=Bipartite_graph
http://en.wikipedia.org/w/index.php?title=Pathfinder_network
http://en.wikipedia.org/w/index.php?title=Widest_path_problem
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://www.boost.org/libs/graph/doc/
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://www.codeplex.com/quickgraph
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://commons.apache.org/sandbox/commons-graph/
http://en.wikipedia.org/w/index.php?title=JavaScript
http://www.turb0js.com/a/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/w/index.php?title=MATLAB
http://www.mathworks.com/matlabcentral/fileexchange/10922
http://en.wikipedia.org/w/index.php?title=Perl
https://metacpan.org/module/Graph
http://en.wikipedia.org/w/index.php?title=PHP
http://www.microshell.com/programming/computing-degrees-of-separation-in-social-networking/2/
http://en.wikipedia.org/w/index.php?title=PL/pgSQL
http://www.microshell.com/programming/floyd-warshal-algorithm-in-postgresql-plpgsql/3/
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=NetworkX
http://en.wikipedia.org/w/index.php?title=R_programming_language
http://cran.r-project.org/web/packages/e1071/index.html
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
https://github.com/chollier/ruby-floyd

FloydWarshall algorithm 19

References
[1] http:/ / www. boost. org/ libs/ graph/ doc/
[2] http:/ / www. codeplex. com/ quickgraph
[3] http:/ / commons. apache. org/ sandbox/ commons-graph/
[4] http:/ / www. turb0js. com/ a/ Floyd%E2%80%93Warshall_algorithm
[5] http:/ / www. mathworks. com/ matlabcentral/ fileexchange/ 10922
[6] https:/ / metacpan. org/ module/ Graph
[7] http:/ / www. microshell. com/ programming/ computing-degrees-of-separation-in-social-networking/ 2/
[8] http:/ / www. microshell. com/ programming/ floyd-warshal-algorithm-in-postgresql-plpgsql/ 3/
[9] http:/ / cran. r-project. org/ web/ packages/ e1071/ index. html
[10] https:/ / github. com/ chollier/ ruby-floyd

• Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L. (1990). Introduction to Algorithms (1st ed.). MIT
Press and McGraw-Hill. ISBN 0-262-03141-8.
• Section 26.2, "The Floyd–Warshall algorithm", pp. 558–565;
• Section 26.4, "A general framework for solving path problems in directed graphs", pp. 570–576.

• Floyd, Robert W. (June 1962). "Algorithm 97: Shortest Path". Communications of the ACM 5 (6): 345. doi:
10.1145/367766.368168 (http:/ / dx. doi. org/ 10. 1145/ 367766. 368168).

• Ingerman, Peter Z. (November 1962). "Algorithm 141: Path Matrix". Template:Communications of the ACM 5
(11): 556. doi: 10.1145/368996.369016 (http:/ / dx. doi. org/ 10. 1145/ 368996. 369016).

• Kleene, S. C. (1956). "Representation of events in nerve nets and finite automata". In C. E. Shannon and J.
McCarthy. Automata Studies. Princeton University Press. pp. 3–42.

• Warshall, Stephen (January 1962). "A theorem on Boolean matrices". Journal of the ACM 9 (1): 11–12. doi:
10.1145/321105.321107 (http:/ / dx. doi. org/ 10. 1145/ 321105. 321107).

• Kenneth H. Rosen (2003). Discrete Mathematics and Its Applications, 5th Edition. Addison Wesley.
ISBN 0-07-119881-4 (ISE). Unknown parameter |ISBN status= ignored (help)

• Roy, Bernard (1959). "Transitivité et connexité.". C. R. Acad. Sci. Paris 249: 216–218.

External links
• Interactive animation of the Floyd–Warshall algorithm (http:/ / www. pms. informatik. uni-muenchen. de/ lehre/

compgeometry/ Gosper/ shortest_path/ shortest_path. html#visualization)
• The Floyd–Warshall algorithm in C#, as part of QuickGraph (http:/ / quickgraph. codeplex. com/)
• Visualization of Floyd's algorithm (http:/ / students. ceid. upatras. gr/ ~papagel/ english/ java_docs/ allmin. htm)

http://www.boost.org/libs/graph/doc/
http://www.codeplex.com/quickgraph
http://commons.apache.org/sandbox/commons-graph/
http://www.turb0js.com/a/Floyd%E2%80%93Warshall_algorithm
http://www.mathworks.com/matlabcentral/fileexchange/10922
https://metacpan.org/module/Graph
http://www.microshell.com/programming/computing-degrees-of-separation-in-social-networking/2/
http://www.microshell.com/programming/floyd-warshal-algorithm-in-postgresql-plpgsql/3/
http://cran.r-project.org/web/packages/e1071/index.html
https://github.com/chollier/ruby-floyd
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ron_Rivest
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-262-03141-8
http://en.wikipedia.org/w/index.php?title=Robert_W._Floyd
http://en.wikipedia.org/w/index.php?title=Communications_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F367766.368168
http://en.wikipedia.org/w/index.php?title=Template:Communications_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F368996.369016
http://en.wikipedia.org/w/index.php?title=Stephen_Cole_Kleene
http://en.wikipedia.org/w/index.php?title=Claude_Elwood_Shannon
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Journal_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F321105.321107
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-07-119881-4_%28ISE%29
http://en.wikipedia.org/w/index.php?title=Help:CS1_errors%23parameter_ignored
http://en.wikipedia.org/w/index.php?title=C._R._Acad._Sci._Paris
http://www.pms.informatik.uni-muenchen.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization
http://www.pms.informatik.uni-muenchen.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization
http://quickgraph.codeplex.com/
http://students.ceid.upatras.gr/~papagel/english/java_docs/allmin.htm

Article Sources and Contributors 20

Article Sources and Contributors
Dijkstra's algorithm Source: http://en.wikipedia.org/w/index.php?oldid=573967170 Contributors: 2001:628:408:104:222:4DFF:FE50:969, 4v4l0n42, 90 Auto, AJim, Abu adam, Adamarnesen,
Adamianash, AgadaUrbanit, Agthorr, Ahy1, Aladdin.chettouh, AlanUS, Alanb, AlcoholVat, Alex.mccarthy, Allan speck, Alquantor, Altenmann, Amenel, Andreasneumann, Angus Lepper, Anog,
Apalamarchuk, Aragorn2, Arjun G. Menon, Arrenlex, Arsstyleh, AxelBoldt, Aydee, B3virq3b, B6s, BACbKA, B^4, Bcnof, Beatle Fab Four, Behco, BenFrantzDale, Bgwhite, Bkell, Blueshifting,
Boemanneke, Borgx, Brona, CGamesPlay, CambridgeBayWeather, Charles Matthews, Chehabz, Choess, Christopher Parham, Cicconetti, Cincoutprabu, Clementi, Coralmizu, Crazy george,
Crefrog, Css, Csurguine, Ctxppc, Cyde, Danmaz74, Daveagp, Davekaminski, David Eppstein, Davub, Dcoetzee, Decrypt3, Deflective, Diego UFCG, Digwuren, Dionyziz, Dmforcier, Dmitri666,
DoriSmith, Dosman, Dougher, Dreske, Drostie, Dudzcom, Dysprosia, Edemaine, ElonNarai, Erel Segal, Eric Burnett, Esrogs, Ewedistrict, Ezrakilty, Ezubaric, Faure.thomas, Foobaz, Foxj,
FrankTobia, Frankrod44, Frap, Fresheneesz, GRuban, Gaiacarra, Galoubet, Gauravxpress, Gerel, Geron82, Gerrit, Giftlite, Gordonnovak, GraemeL, Graham87, Grantstevens, GregorB, Guanaco,
Gutza, Hadal, Haham hanuka, Hao2lian, Happyuk, Hell112342, HereToHelp, Herry12, Huazheng, Ibmua, IgushevEdward, IkamusumeFan, Illnab1024, Iridescent, Itai, JBocco, JForget,
Jacobolus, Jarble, Jaredwf, Jason.Rafe.Miller, Jellyworld, Jeltz, Jewillco, Jheiv, Jim1138, Jochen Burghardt, Joelimlimit, JohnBlackburne, Jongman.koo, Joniscool98, Jorvis, Julesd, Juliusz
Gonera, Justin W Smith, K3rb, Kbkorb, Keilana, Kesla, Kh naba, King of Hearts, Kku, Kndiaye, Kooo, Kostmo, LC, LOL, Laurinkus, Lavaka, Leonard G., Lone boatman, LordArtemis,
LunaticFringe, Mahanga, Mameisam, MarkSweep, Martynas Patasius, Materialscientist, MathMartin, Mathiastck, MattGiuca, Matusz, Mccraig, Mcculley, Megharajv, MementoVivere,
Merlion444, Mgreenbe, Michael Hardy, Michael Slone, Mikeo, Mikrosam Akademija 2, Milcke, MindAfterMath, Mkw813, Mr.TAMER.Shlash, MrOllie, MusicScience, Mwarren us, Nanobear,
NetRolller 3D, Nethgirb, Nixdorf, Noogz, Norm mit, Obradovic Goran, Obscurans, Oleg Alexandrov, Oliphaunt, Olivernina, Optikos, Owen, Peatar, PesoSwe, Piojo, Pol098, PoliticalJunkie,
Possum, ProBoj!, Pseudomonas, Pshanka, Pskjs, Pxtreme75, Quidquam, RISHARTHA, Radim Baca, Rami R, RamiWissa, Recognizance, Reliableforever, Rhanekom, Rjwilmsi, Robert
Southworth, RodrigoCamargo, RoyBoy, Ruud Koot, Ryan Roos, Ryangerard, Ryanli, SQGibbon, Sambayless, Sarkar112, Seanhalle, Sephiroth storm, Shd, Sheepeatgrass, Shizny, Shriram,
Shuroo, Sidonath, SiobhanHansa, Sk2613, Slakr, Sniedo, Sokari, Someone else, Soytuny, Spencer, Sprhodes, Stdazi, SteveJothen, Subh83, Sundar, Svick, T0ljan, Tehwikipwnerer, Tesse, Thayts,
The Arbiter, TheRingess, Thijswijs, Thom2729, ThomasGHenry, Timwi, Tobei, Tomisti, Torla42, Trunks175, Turketwh, VTBassMatt, Vecrumba, Velella, Vevek, Watcher, Wierdy1024,
WikiSlasher, Wikipelli, Wildcat dunny, Wphamilton, X7q, Xerox 5B, Ycl6, Yutsi, Yworo, ZeroOne, Zhaladshar, Zr2d2, 629 anonymous edits

Bellman–Ford algorithm Source: http://en.wikipedia.org/w/index.php?oldid=574380346 Contributors: Aaron Rotenberg, Abednigo, Aednichols, Aene, Agthorr, Aladdin.chettouh,
AlexCovarrubias, Altenmann, Anabus, Andris, Arlekean, B3virq3b, Backslash Forwardslash, BenFrantzDale, Bjozen, Bkell, BlankVerse, Brona, Brookie, CBM, Carlwitt, Charles Matthews,
CiaPan, Ciphergoth, David Eppstein, Dcoetzee, Docu, Drdevil44, Ecb29, Enochlau, Epbr123, Ferengi, FrankTobia, Fredrik, Fvw, Gadfium, Gauravxpress, Giftlite, GregorB, Guahnala, Happyuk,
Headbomb, Heineman, Helix84, Iceblock, Istanton, Itai, J.delanoy, Jamelan, Jaredwf, Jellyworld, Jftuga, Josteinaj, Justin W Smith, Konstable, LOL, Lavv17, Lone boatman, Mario777Zelda,
Mathmike, Mazin07, Mcld, Michael Hardy, Miym, Monsday, N Shar, Naroza, Nihiltres, Nils Grimsmo, Nullzero, Orbst, P b1999, PanLevan, Pion, Pjrm, Poor Yorick, Posix4e, Pskjs,
Quuxplusone, Qwertyus, Rjwilmsi, RobinK, Rspeer, Ruud Koot, SQL, Salix alba, Sam Hocevar, Shuroo, Sigkill, Skizzik, Solon.KR, SpyMagician, Stdazi, Stderr.dk, Stern, Str82no1, Tomo,
ToneDaBass, Tsunanet, Tvidas, Ucucha, Waldir, Wavelength, Wmahan, Writer130, Zholdas, 198 anonymous edits

Floyd–Warshall algorithm Source: http://en.wikipedia.org/w/index.php?oldid=577353115 Contributors: 16@r, 2001:41B8:83F:1004:0:0:0:27A6, Aenima23, AlanUS, AlexandreZ,
Algebra123230, Altenmann, Anharrington, Barfooz, Beardybloke, Buaagg, C. Siebert, CBM, Cachedio, CiaPan, Closedmouth, Cquimper, Daveagp, Davekaminski, David Eppstein, Dcoetzee,
Dfrankow, Dittymathew, Donhalcon, DrAndrewColes, Fatal1955, Fintler, Frankrod44, Gaius Cornelius, Giftlite, Greenleaf, Greenmatter, GregorB, Gutworth, Harrigan, Hemant19cse, Hjfreyer,
Intgr, J. Finkelstein, JLaTondre, Jarble, Jaredwf, Jellyworld, Jerryobject, Jixani, Joy, Julian Mendez, Justin W Smith, Kanitani, Kenyon, Kesla, KitMarlow, Kletos, Leycec, LiDaobing, Luv2run,
Maco1421, Magioladitis, MarkSweep, Md.aftabuddin, Michael Hardy, Minghong, Mini-Geek, Minority Report, Mqchen, Mwk soul, Nanobear, Netvor, Nicapicella, Nishantjr, Nneonneo,
Obradovic Goran, Oliver, Opium, Pandemias, Phil Boswell, Pilotguy, Pjrm, Polymerbringer, Poor Yorick, Pvza85, Pxtreme75, Quuxplusone, Rabarberski, Raknarf44, RobinK, Roman Munich,
Ropez, Roseperrone, Ruud Koot, Sakanarm, SchreiberBike, Shadowjams, Shmor, Shyamal, Simoneau, Smurfix, Soumya92, Specs112, Sr3d, Stargazer7121, SteveJothen, Strainu, Svick, Taejo,
Teles, Thái Nhi, Treyshonuff, Two Bananas, Volkan YAZICI, W3bbo, Wickethewok, Xyzzy n, Yekaixiong, 236 anonymous edits

Image Sources, Licenses and Contributors 21

Image Sources, Licenses and Contributors
Image:Dijkstra Animation.gif Source: http://en.wikipedia.org/w/index.php?title=File:Dijkstra_Animation.gif License: Public Domain Contributors: Ibmua
Image:Dijkstras progress animation.gif Source: http://en.wikipedia.org/w/index.php?title=File:Dijkstras_progress_animation.gif License: Creative Commons Attribution 3.0 Contributors:
Subh83
File:Bellman-Ford worst-case example.svg Source: http://en.wikipedia.org/w/index.php?title=File:Bellman-Ford_worst-case_example.svg License: Creative Commons Zero Contributors:
User:Dcoetzee
File:Floyd-Warshall example.svg Source: http://en.wikipedia.org/w/index.php?title=File:Floyd-Warshall_example.svg License: Creative Commons Zero Contributors: User:Dcoetzee

License 22

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/

