Let $G = (V, E)$ be a directed graph with $\text{cost}(i, j)$ being the cost of the edge ij. We want to compute a shortest path between every ordered pairs of vertices.

NOTATION: Assume $V = \{1, 2, \ldots, n\}$

For any $1 \leq k \leq n$, let A^k_{ij} denote the cost of a shortest path from i to j, so that any intermediate vertex is picked from the set $\{1, 2, \ldots, k\}$

Define $A^0(i, j) = \text{cost}(i, j)$ for any $i, j \in V$.

Recurrence relation is

$$A^k(i, j) = \min \{ A^{k-1}(i, j), A^{k-1}(i, k) + A^{k-1}(k, j) \}$$
Algorithm (outline)
We Generate matrices $A^0, A^1, ..., A^n$ in that order. Note that A^0 is the cost matrix. While generating $A^k, k = 1, 2, ..., n$, we compute $A^k(i, j)$ using our recurrence relation in $O(1)$ time. It follows that A_k, $k = 1, 2, ..., n$ can be computed in $O(n^2)$, and hence this algorithm has $O(n^3)$ time complexity, and uses $O(n^3)$ space. The following well known version of Floyd-Warshall’s Algorithm uses $O(n^2)$ storage, only.

$A \leftarrow \text{CostMatrix}$
For $k \leftarrow 1$ to n do
For $i \leftarrow 1$ to n do
For $j \leftarrow 1$ to n do
$A(i, j) \leftarrow \min \{ A(i, j), A(i, k) + A(k, j) \}$
\[
D^{(0)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}
\]
\[
\Pi^{(0)} = \begin{pmatrix}
\text{NIL} & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\
4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix}
\]
\[
D^{(1)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}
\]
\[
\Pi^{(1)} = \begin{pmatrix}
\text{NIL} & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\
4 & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix}
\]
\[
D^{(2)} = \begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}
\]
\[
\Pi^{(2)} = \begin{pmatrix}
\text{NIL} & 1 & 1 & 2 & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & 2 & 2 \\
4 & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix}
\]
\[
D^{(3)} = \begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}
\]
\[
\Pi^{(3)} = \begin{pmatrix}
\text{NIL} & 1 & 1 & 2 & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & 2 & 2 \\
4 & 3 & 4 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix}
\]
\[
D^{(4)} = \begin{pmatrix}
0 & 3 & 1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}
\]
\[
\Pi^{(4)} = \begin{pmatrix}
\text{NIL} & 1 & 4 & 2 & 1 \\
4 & \text{NIL} & 4 & 2 & 1 \\
4 & 3 & \text{NIL} & 2 & 1 \\
4 & 3 & 4 & \text{NIL} & 1 \\
4 & 3 & 4 & 5 & \text{NIL}
\end{pmatrix}
\]
\[
D^{(5)} = \begin{pmatrix}
0 & 1 & 3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}
\]
\[
\Pi^{(5)} = \begin{pmatrix}
\text{NIL} & 3 & 4 & 5 & 1 \\
4 & \text{NIL} & 4 & 2 & 1 \\
4 & 3 & \text{NIL} & 2 & 1 \\
4 & 3 & 4 & \text{NIL} & 1 \\
4 & 3 & 4 & 5 & \text{NIL}
\end{pmatrix}
\]
Matrix Chain Problem

We are given matrices $A_1, A_2, A_3, ..., A_n$, A_i has p_{i-1} rows and p_i columns. We want to compute

$$A_1 \times A_2 \times \times A_n$$

The problem is to find an order in which we can do the multiplications so that the number of scalar multiplications is minimized.

NOTATIONS:

For $j \geq i$, let $m[i, j]$ denote the optimal answer for the matrices $A_i \ldots A_j$. We define $m[i, i] = 0$. Note that we need to compute $m[1, n]$.

For $j > i$ we have the following recurrence relation

$$m[i, j] = \min_{i \leq k < j} \{ m[i, k] + m[k+1, j] + p_{i-1}p_kp_j \}$$
Matrix Chain Problem

Algorithm (outline)
Our Algorithms has n stages. At stage $l = 0, 1, ..., n - 1$, we generate all $m[i, j]$, with $j - i = l$ and store them. (m is stored as a 2 dimensional array.) Thus, we first compute and store all $m[i, j]$ with $j - i = 0$, then compute and store all $m[i, j]$ with $j - i = 1$, etc. When computing $m[i, j]$ at stage l (that is $j - i = l$) we use the recurrence relation. Then each $m[i, j]$ can be computed in $O(l)$ or time $O(n)$ time. Since we need to compute $O(n^2)$ entries for m, the time complexity is $O(n^3)$. Note that a tighter analysis gives $\Theta(n^3)$ time complexity.
The m and s tables computed by \textsc{Matrix-Chain-Order} for $n = 6$ and the following matrix dimensions:

<table>
<thead>
<tr>
<th>matrix</th>
<th>dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>30×35</td>
</tr>
<tr>
<td>A_2</td>
<td>35×15</td>
</tr>
<tr>
<td>A_3</td>
<td>15×5</td>
</tr>
<tr>
<td>A_4</td>
<td>5×10</td>
</tr>
<tr>
<td>A_5</td>
<td>10×20</td>
</tr>
<tr>
<td>A_6</td>
<td>20×25</td>
</tr>
</tbody>
</table>

The tables are rotated so that the main diagonal runs horizontally. Only the main diagonal and upper triangle are used in the m table, and only the upper triangle is used in the s table. The minimum number of scalar multiplications to multiply the 6 matrices is $m[1, 6] = 15,125$. Of the darker entries, the pairs that have the same shading are taken together in line 9 when computing

\[
m[2, 2] + m[3, 5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 = 13000, \\
m[2, 5] = \min \left\{ m[2, 3] + m[4, 5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\
 m[2, 4] + m[5, 5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 = 11375 \right. \\
 = 7125 .
\]
Longest common subsequence

Let \(X = x_1, x_2, \ldots x_n \) and \(Y = y_1, y_2, \ldots y_m \) be sequences of lengths \(n \) and \(m \). We want to find a longest common subsequence of \(X \) and \(Y \).

Let \(L[i, j] \) denote the optimal answer for \(x_1, x_2, \ldots x_i \) and \(y_1 y_2, \ldots y_j \). Note that we need to compute \(L[n, m] \).

Define \(L[i, j] = 0 \), if \(i = 0 \), or \(j = 0 \).

\[
L[i, j] = \begin{cases}
0, & \text{if } i = 0 \text{ or } j = 0 \\
L[i-1, j-1] + 1, & \text{if } x_i = y_j \\
\max\{L[i, j-1], L[i-1, j]\}, & \text{if } x_i \neq y_j
\end{cases}
\]
Longest common subsequence

Algorithm (outline)
We use a 2 dimensional array to store L which has \(n + 1 \) rows and \(m + 1 \) columns. We set the first row and the first column of L to 0. We use the recurrence relation to compute the entries of L in a major row order, that is, first row 0, then, row 1, etc. Then, computing \(L[i, j] \) in row i will take \(O(1) \) time. So time complexity of computing \(L[n, m] \) is \(O(nm) \).
A 2 times optimal approximation algorithm for triangular TSP

Let $G = (V, E)$ be a complete graph with weight function $w : E \rightarrow \mathbb{R}^+$. The Traveling salesman Problem (TSP) is to find a Hamiltonian cycle with minimum weight. An instance of TSP is called triangular if $w(x, y) + w(y, z) \geq w(x, z)$, for all $x, y, z \in V$.

Lemma

Let O be an optimal tour for TSP and let T be a minimum spanning tree. Then $w(O) \geq w(T)$.

Proof. Note that $O - \{e\}$ is a spanning path of G. Thus $w(O - \{e\}) \geq w(T)$, and consequently $w(O) \geq w(T)$. □.
A 2 times optimal approximation algorithm for triangular TSP

Lemma

Let T be a minimum spanning tree. Pick a root r and let L be a list of edges in T that is obtained by pre-order traversal of T. Then $w(L) = 2w(T)$. □

Theorem

Let $G = (V, E)$ and let w be a weight function that satisfies triangular inequality. Let T be a minimum spanning tree of G. Pick a root r and let L be a list of edges in T that is obtained by pre-order traversal of T. Let C be a Hamiltonian cycle that is obtained by short circuiting L. Then

$$2w(O) \geq 2w(T) \geq w(C) \geq w(O) \geq w(T)$$

Thus C is a 2 times optimal approximate solution for triangular TSP. □
A 2 times optimal approximation algorithm for triangular TSP

Algorithm (outline)
First, compute a minimum spanning tree T, in $O(n^2)$, using Prim’s algorithm. Now select a root r and perform a pre-order traversal to obtain a walk L, and let C be the Hamiltonian cycle which is obtained by short circuiting L. Then, it follows from last Theorem, that, C is a 2 times optimal approximate solution for triangular TSP.
Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices lie on intersections of integer grid lines. For example, f is one unit to the right and two units up from h. The cost function between two points is the ordinary euclidean distance. (b) A minimum spanning tree T of the complete graph, as computed by MST-PRIM. Vertex a is the root vertex. Only edges in the minimum spanning tree are shown. The vertices happen to be labeled in such a way that they are added to the main tree by MST-PRIM in alphabetical order. (c) A walk of T, starting at a. A full walk of the tree visits the vertices in the order $a, b, c, b, h, b, a, d, e, f, e, g, e, d, a$. A preorder walk of T lists a vertex just when it is first encountered, as indicated by the dot next to each vertex, yielding the ordering a, b, c, h, d, e, f, g. (d) A tour obtained by visiting the vertices in the order given by the preorder walk, which is the tour H returned by APPROX-TSP-TOUR. Its total cost is approximately 19.074. (e) An optimal tour H^* for the original complete graph. Its total cost is approximately 14.715.
Approximating Vertex Cover

Let \(G = (V, E) \) be a graph, and let \(S \subseteq V \). \(S \) is a vertex cover, if any edge in \(E \) has at least one endpoint in \(S \). A vertex cover is a minimum vertex cover, if it contains the smallest number of vertices.

Let \(G = (V, E) \) be a graph and let \(M \subseteq E \). \(M \) is called a matching if no two edges in \(M \) have an end point in common. A matching \(M \) is a maximum matching if it has contained the largest number of edges. A matching \(M \) is maximal if for any \(e \in E - M \), \(M \cup \{e\} \) is not a matching.

- Note that a maximal matching may not be a maximum matching. Also, note that a simple greedy algorithm computes a maximal matching in \(O(|V| + |E|) \) time.
Theorem

Let C be a vertex cover, and M be a matching in G. Then $|C| \geq |M|$.

Theorem

Let M be a maximal matching in G, and let C be the set of all endpoints for edges in M. (thus $|C| = 2|M|$.) Then C is a vertex cover in G.

Approximating Vertex Cover

A 2 Times Optimal Approximation Algorithm

- Compute a maximal matching M in $O(|V| + |E|)$ time, and let C be the set of all $2|M|$ end points of edges in M.

By the second theorem, C is a vertex cover with $|C| = 2|M|$. Now let C^* be a minimum vertex cover, by the first theorem $|C^*| \geq |M|$. Thus, $|C| = 2|M| \leq 2|C^*|$.
For the definitions see the CLR book.

Theorem

Any comparison sort Algorithm requires $\Omega(n \log(n))$ time (comparisons) in the worst case.

Proof. Use the decision tree model. Assume that the height is h. Since the tree is binary and must have $n!$ leaves, we should get $2^h \geq n!$ implying $h \geq \log(n!)$. But $\log(n!) = \Theta(n \log(n))$ (Why ?) so the claim follows. \square