1. The operator * in regular expressions is called **Kleene closure**

2. True or False. Justify your answer in either case.

 The set of languages accepted by nondeterministic finite automata is a proper subset of the set of languages accepted by deterministic finite automata.

 False. Both classes are the same, the class of regular languages.

3. True or False. The following grammar is ambiguous.

 \[S \rightarrow aSbS | bSaS | \epsilon \]

 True. \[S \Rightarrow aSbS \Rightarrow abS \Rightarrow ababS \Rightarrow abab \] and \[S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow ababS \Rightarrow abab \] are 2 different left-most derivations for abab.

4. List the grammars in the **Chomsky hierarchy** and show the containment relationship of their corresponding language classes.

 Regular languages are contained in context-free languages which are contained in context-sensitive languages which are contained in recursively enumerable languages. Each is defined by a grammar class of the same name, except that recursively enumerable languages are defined by unrestricted grammars.

5. Which of the following languages is not regular.

 (a) \[L = \{ w \mid w \in \{0, 1\}^*, \text{the number of 0's + the number of 1's is odd} \} \]
 (b) \[L = \{ 0^i1^j \mid i \geq 0, j \geq 0, \text{if } i \text{ is odd, } j \text{ is even, if } i \text{ is even, } j \text{ is odd} \} \]
 (c) \[L = \{ w#w^R \mid w \in \{0, 1\}^* \} \]
 (d) \[L = \{ w#w^R \mid w \in \{0, 1\}^*, |w| \leq 4115 \} \]
 (e) \[L \text{ is the set of all string constants in a programming language like C, C++ or Java (e.g., \text{"hello"}, \text{"!#$%&*"}, \text{"Am I regular?"}).} \]

 (c) is not regular. It is not possible to compare a string of arbitrary length against its reverse.

6. Write a finite automaton (deterministic, nondeterministic, or nondeterministic with \(\epsilon\)-transitions) to recognize the language over \(\{a, b, c\}\)\(^*\) such that every string of \(a\)'s must be followed by at least one \(b\) and every string of \(b\)'s must be followed by at least one \(c\).

 \[M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_0\}) \]
 \[\delta(q_0, a) = q_1 \]
 \[\delta(q_0, b) = q_2 \]
 \[\delta(q_0, c) = q_0 \]
 \[\delta(q_1, a) = q_1 \]
 \[\delta(q_1, b) = q_2 \]
 \[\delta(q_2, b) = q_2 \]
 \[\delta(q_2, c) = q_0 \]
7. Using the pumping lemma for regular languages, prove that the language \(L = \{b_i\#b_{i+1}^R \mid b_n \text{ is the binary representation of } n\} \) is not regular. Note that \(L \) includes 0\#1, 1\#01, 10\#11, 11\#001, etc.

Let \(w = 1^n\#0^n1 = xyz \). By the pumping lemma, \(xyyz \) will be in \(L \). But it cannot be in \(L \) since pumping any string containing the first \(n \) symbols will result in a string with more 1’s to the left of \# than there are 0’s to the right of \#.

8. Write a context-free grammar for the language \(L = \{b_i\#b_{i+1}^R \mid b_n \text{ is the binary representation of } n\} \). Note that \(L \) includes 0\#1, 1\#01, 10\#11, 11\#001, etc.

Note that for any binary number \(b_i = a_1a_2...a_k01^m \), \(b_{i+1} = a_1a_2...a_k10^m \), so this language is \(w0^m\#0^m1w^R \). The grammar therefore has productions:

\[
S \rightarrow A \mid B1 \\
A \rightarrow 0A0 \mid 1A1 \mid 0B1 \mid 0#1 \\
B \rightarrow 1B0 \mid 1#0 \\
B \Rightarrow 1^m\#0^m (m \geq 1). \quad A \Rightarrow w0Blw^R \Rightarrow w0^1m\#0^m1w^R (m \geq 0). \quad S \rightarrow B1 \text{ takes care of the case where } b_i \text{ contains no } 0.
\]