
Improving the Effectiveness of Test Suite
through Mining Historical Data

Jeff Anderson
Microsoft

North Dakota State U.
Fargo, ND, USA

jeffrey.r.anderson@ndsu.edu

Saeed Salem
North Dakota State U.

Fargo, ND, USA
saeed.salem@ndsu.edu

Hyunsook Do
North Dakota State U.

Fargo, ND, USA
hyunsook.do@ndsu.edu

ABSTRACT
Software regression testing is an integral part of most major soft-
ware projects. As projects grow larger and the number of tests
increases, performing regression testing becomes more costly. If
software engineers can identify and run tests that are more likely to
detect failures during regression testing, they may be able to bet-
ter manage their regression testing activities. In this paper, to help
identify such test cases, we developed techniques that utilizes var-
ious types of information in software repositories. To assess our
techniques, we conducted an empirical study using an industrial
software product, Microsoft Dynamics AX, which contains real
faults. Our results show that the proposed techniques can be ef-
fective in identifying test cases that are likely to detect failures.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing & Debugging—testing tools

General Terms
Experimentation, Measurement, Verification

Keywords
Test failure prediction, mining software repositories, regression test-
ing, empirical study

1. INTRODUCTION
Regression testing is one of the most common means for en-

suring the quality of software products during development cycles
[2]. While the benefit of running regression tests is increased qual-
ity, there is also a cost to this effort in terms of resources to run
the suites and to analyze their results. For instance, we learned
that running the full regression tests for Microsoft Dynamics AX
often takes multiple days spread across a large number of comput-
ers. Testing processes by which fewer tests are run while main-
taining the same ability to detect defects are therefore beneficial
in reducing costs while maintaining quality, and many researchers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31-June 1, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2863-0/14/05 ...$15.00.

have proposed various regression testing techniques to achieve this
goal (e.g., regression test selection and test prioritization [5, 13]).

By identifying tests which are more likely to detect failures while
delaying or skipping tests that are less likely to detect failures, a
great deal of the cost of running regression tests can be eliminated.
Alternately, the faster run time means regression tests can be run on
a more frequent cadence and thereby would be more likely to catch
regression faults sooner [3, 4].

While many current regression testing techniques focus on static
analysis and explicit relationships among tests and product ele-
ments, we believe that there are many additional relationships among
software artifacts (e.g., software code, test code and historical test
results) that are not obvious or even not visible to the owners of the
software artifacts. If these underlying relationships about software
systems are able to be discovered, regression testing processes can
be improved by selecting and running more important test cases for
failure detection.

To investigate this possibility, we apply a repository mining ap-
proach to several types of data commonly found in software repos-
itories, or available by performing calculations on the contents of
those repositories. These data sets include software test coverage
data, prior defect-revealing behavior related to test cases, previous
test results, build history information, and smoke tests.

Using these data sets, we propose and develop two techniques.
The first approach is referred to as most common failures in which
test cases that failed the most previously are recommended as test
cases that are likely to fail in the future. The second approach is
referred to as failure by association where failures in certain subsets
of tests are used to determine other subsets that are likely to fail.
Both of these techniques are then paired with an examination of
age of data we refer to as windowing. The techniques are run once
using all historical data, and then again using only data from the
most recent runs.

To investigate the effectiveness of the proposed techniques, we
have designed and performed an empirical study using an indus-
trial product, Microsoft Dynamics AX that contains real failure in-
formation. Our results show that using information about histor-
ical failures can better predict future failures. Specifically, using
techniques such as frequency of failures and failure by association
based on a window of recent builds outperforms the same tech-
niques on the entire historical dataset.

The rest of the paper is organized as follows. Section 2 describes
our new regression testing techniques that incorporate failure by
association as well as data collection windows. Sections 3 and 4
present our experiment design, the results of the study, and data
analysis. Section 5 discusses our results and their implications,
and Section 6 presents related work. Finally, Section 7 presents
conclusions and discusses possible future work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597084

142

2. APPROACH
In this section, we describe the frequent failures, failure by asso-

ciation and windowing approaches that were examined. While we
describe these approaches with Microsoft Dynamics AX, the same
approaches could be applied to any system with a similar test in-
frastructure and tracking system.

The data used in this study is the result of all development done
during the Dynamics AX 2012 R2 release. This was a major release
encompassing over a year of development. During the development
phase, check-ins of source code to the source control system occur
at random intervals, 24 hours a day, 365 days a year. While they
may cluster more sparsely or heavily on certain days, there is little
cadence to them as shown in Figure 1.

Builds of the source control occur on a regular nightly cadence,
regardless of how many check-ins have occurred since the previous
build. While not all builds are successful, the vast majority are
usable, deployed, and used on a regular basis by developers.

As shown in Figure 1, the full regression test suite is not ex-
ecuted on each nightly build due to the time the regression test
suite takes to execute. Approximately 100 test machines are uti-
lized for a regression test run, and the full run takes approximately
3 days to complete. Thus, full regression test runs are executed
approximately weekly, although that cadence may shift forward or
backward by a few days based on build quality, holiday schedules,
infrastructure or other issues.

The goal of this research is to select effective regression tests that
are likely to detect failures and to run them, giving development
extra time to fix any issues discovered while the remaining tests are
run. If a more useful set of tests runs earlier, problems found by
such tests can be fixed up to two days sooner based on a three day
test run.

Figure 2 demonstrates the mechanism by which test case selec-
tion occurs. At the start of any test run, such as the one shown on
2/4/2013 of Figure 1, the test cases for that regression test run are
selected. This is accomplished by running a selection algorithm
which reads from all test artifacts as well as historical test results
from previous builds. The output of that algorithm is a set of tests
deemed more likely to fail in the current regression test run. That
set of tests runs first on the pool of test computers. Once execution
of the selected tests completes and the test machines are free again,
then the remaining tests are executed.

A final note in Figure 2 is that a small random set of tests out of
the pool of all tests are pre-executed as part of the build process.
These are referred to as “smoke tests” and are used to help deter-
mine the general quality of the build and whether or not it can be
used for a full regression test run. The selection algorithm may also
consider the results of those smoke tests in determining the selected
tests deemed most likely to fail for that test run.

Figure 2: Test Selection Process

This study can be described abstractly as follows. Consider a set
of n regression tests labeled T1, T2 through Tn. We define Ai to
be the set of all tests runs in the ith regression suite run:

Ai = {Ti1, Ti2, ...Tin}

The union of all tests from all test runs is defined as A. Note that
A differs from Ai since a given test may or may not be run in a
given regression test run due to infrastructure issues, time pressure,
active development causing the test to be temporarily disabled, or
various other reasons.

Let Fi be the set of all failed tests in a given regression test run.
So if m failures existed in regression test run i, we would define:

Fi = {Ti1, Ti2, ...Tim}

Only tests which were run in a given regression test run may
actually fail, i.e., Fi ⊆ Ai.

The goal of this study is to predict Fi as accurately as possible
for a given regression test run. We will therefore define the set of k
predicted failures for regression test run i as Pi such that:

Pi = {Ti1, Ti2, ...Tik}

Only tests that have failed in previous regression test runs can be
predicted to fail in the current test run. So, we have that:

Pi ⊆
i−1⋃
j=1

Fj

There is however no guarantee that Pi and Fi overlap in any
way. If we were able to perfectly predict the failures in regression
test run i, then we would have a case where Pi = Fi, but this
perfect prediction is likely not possible. We can define the set of
correctly predicted test failures Ci as the intersection between the
predicted tests and the test that actually failed, i.e., Ci = Pi ∩ Fi.

Increasing the set of correctly predicted tests is important, as it
will increase the bug finding abilities of regression test run i. How-
ever, it should be noted that by increasing the size of Pi, the size
of Ci can also be increased, to the point where if Pi = Ai, then
we would have Ci = Fi. While all failed tests would have been
correctly predicted, this is not a good situation, since |Pi| would
be significantly larger than |Fi|. These extra predicted failures that
did not occur would require additional test resources to run, but
would not find any bugs. Therefore what we actually want to do is
maximize |Ci| while minimizing |Pi|.

We measure these competing interests through the use of two as-
pects, precision and recall. Precision is a measure of the how well
we were able to predict the tests that have actually failed, expressed
as the ratio of correctly predicted failures to the number of predic-
tions made. More formally, we define:

Precision =
|Pi ∩ Fi|
|Pi|

=
|Ci|
|Pi|

Recall on the other hand measures how well we were able to
cover all the failed tests with our prediction. It is the ratio of cor-
rectly predicted failures in the regression test run. This can be de-
fined as:

Recall =
|Pi ∩ Fi|
|Fi|

=
|Ci|
|Fi|

With these two measures we have a good indication as to how
well a given heuristic meets the goals. But these two measures
need to somehow be combined as increasing one measure will often

143

Figure 1: Build and Test Cadence

decrease the other. For that we compute the harmonic mean of the
two values, often referred to as F-measure.

F −measure =
2× Precision×Recall

(Precision+Recall)

The values of these measures range between 0 and 1.
Figure 3 depicts a concrete example of the method in which the

empirical study was performed. This diagram presents the full his-
torical results of which tests passed and failed in regression test
runs 1 through 9. As an example, we will consider performing the
selection algorithm to predict the tests that are likely to fail in test
run number 9. This prediction will be based on the historic results
from builds 1 through 8, together with the smoke tests of T2 and
T10 which were pre-executed on test run 9. Those predicted fail-
ures will then be compared against the actual failures seen in the
historic results for rest run 9 and analyzed.

Note that Figure 3 shows both passes and fails of tests as being
part of the data set. In this study, only failures are examined, as
failed tests are what is being predicted. So for example, the ac-
tual dataset for test run number 4 would only contain 4 failed tests,
{T4, T5, T7, T14}. These represent the failed tests in test run num-
ber 4 and would be expressed as F4. The rest of the tests are only
shown in this diagram to aid in understanding.

Once the set of failures has been predicted, we analyze the qual-
ity of the prediction based on precision, recall and F-measure. For
example, consider a case where we predict for test run number 9
that 8 test cases would fail. Of those, 3 actually did fail. And two
additional tests that actually failed were not predicted to fail.

As previously defined, precision is the percentage of the pre-
dicted failure that actually did fail. So in this example, the precision
would be 3/8 = 0.375. As the total percentage of all actual failures
that were predicted, recall in this example would be 3/5 = 0.600.
Combining precision and recall, the F-measure is 0.462.

2.1 Most Frequent Failures
We refer to the first algorithm for predicting failures as Most

Frequent Failures. In this approach, a threshold is used, and any
test which failed at least as many times as the threshold in previous
test runs is predicted to be likely to fail again.

As an example, consider using this approach with a threshold of
50 percent using the results depicted in Figure 3 to predict failures
in test run number 9. Since there are 8 previous runs any test that
fails 4 or more times in test runs 1 through 8 exceeds the threshold
and will be predicted to be likely to fail. Based on that prediction it
would be selected above other test cases.

In the case of Figure 3, test T1 failed 5 times in test runs 1
through 8, and therefore exceeds the threshold and is selected. Sim-
ilarly, T5, T6, T10, and T14 are also selected. Using our previous
notation, we have:

P9 = {T1, T5, T6, T10, T14}

These are then compared with the 5 actual failures in build 9,
F9 = {T1, T3, T10, T13, T14}.

Out of the 5 predicted failures, 3 were correctly predicted:

C9 = P9 ∩ F9 = {T1, T10, T14}

This yields a precision of |C9|/|P9| = 3/5 = 0.600 , recall of
|C9|/|F9| = 3/5 = 0.600, and F-measure of 0.600.

2.2 Failure by Association
The second algorithm used in predicting likely failures is re-

ferred to as Failure by Association. In this technique, we use con-
cepts from association rule mining to predict failures. Association
rule mining is a technique by which a database of historical trans-
actions is analyzed, and a set of rules are determined which indi-
cates associations between items in the transactions [1]. Associa-
tion rules mined from previous transactions can be utilized for pre-
dicting future associations. For simplicity we often refer to failure
by association by the acronym ARM, since it relies on association
rule mining concepts.

Our failure by association approach is similar to association rule
mining, with one major difference. Instead of determining the
rules ahead of time, we run the rule mining algorithms separately
for each test run being analyzed. We did this for two reasons.
First, the number of transactions in our system is relatively small,
being based on only 64 total regression test runs. So if a static
database were used such as starting at halfway through the project,
this greatly reduces both the number of test runs we can analyze
as well as the number of transactions being considered in the rules.
Also importantly, association rule mining techniques are very com-
putationally intensive. The running time of association rule mining
mainly depends on the number of items in the dataset and the min-
imum support and confidence. The number of tests cases which
correspond to the number of items in association rule mining is
over 65,000 test cases to analyze.

In Failure by Association, relationships between test failures are
found and then used to predict failures in a given regression test
run. Unlike the most frequent failures approach in the previous
section, the Failure by Association approach requires some infor-
mation from the current regression test run in addition to historical
data. Fortunately, this information is available in the form of smoke
tests. As described by Kaner et all [7], smoke tests are a small sam-
ple of tests that are run after each build to determine whether or
not the build is high enough quality to continue running additional
tests. We define the set of failed smoke tests in regression test run
i as the set of regression tests which were run in i, but failed. We
define Si as:

Si = {Ti1, Ti2, ...Tir}
The association rules are of the form LHS =⇒ RHS. The

support of a rule is the number of transactions in which the left
hand side items appear along the right high side items. Support

144

Figure 3: Sample data

is used to filter out weak rules that show the association in a very
small number of transactions. The confidence of a rule is the ratio
of the number of times the right hand side items appear when the
left side items appear. Confidence is the likelihood that the right
hand side items appear given that the left hand side items appear.
Confidence is used to filter out rules where there is not a strong
correlation between the left and right hand side items appearing.
For a given dataset and support and confidence threshold, a set of
‘interesting’ rules is mined, such that:

Rules = {(LHS1 =⇒ RHS1), ...(LHSx =⇒ RHSx)}

The LHS is the left hand side of each rule, also referred to as the
antecedent. Given the failed tests in previous regression test runs,
we can mine all the rules whose support and confidence exceed
user-specified thresholds. However, we only have a small set of
tests for the regression test run for which we are trying to predict
the tests that are likely to fail. Therefore, we are not interested in
all the rules that are valid in the previous test runs. We are only
interested in the rules in which the LHS tests are part of the smoke
tests, i.e., LHSj ⊆ Si.

To mine only the sought-after rules which are applicable for the
current test run, we propose a different method for mining these
rules. For a given support threshold, minsup, we mine the frequent
tests in previous test runs. Only these frequent tests can be on the
left hand side of any interesting rules since by definition the tests in
an interesting rule have to appear in at least minsup transactions.
The transactions that have at least one of these frequent tests are
retained and other transactions are pruned.

Using Figure 3 as an example, let us consider using a support of
50 percent. Since we are predicting test failures for regression test
run 9, the first step is to find all itemsets which occur in test runs 1
through 8 more than 50 percent of the time, i.e., 4 or more runs. So
any test that occurs 4 or more times is considered to be frequent.
Since the LHS consists only of tests from the smoke tests S, only
T2 and T10 need to be examined as being part of the LHS.

Based on this simplified example with only two smoke tests (T2,
T10), only T10 is frequent (appears in test runs 2, 3, 5, 6, 7 and 8)
and thus it is the only smoke test that can appear in the LHS of
any interesting rule.

The second step is to mine for associations between tests and the
frequent smoke tests in these transactions. Once all the antecedents
have been determined based on support, the next step is to find the
associated RHS or right hand side of the rule, also referred to as
the consequent. Similar to how a support level is used in determin-
ing the frequent LHS itemsets, a threshold called the confidence
is used to determine which itemsets occur in the RHS. Unlike the

LHS which examines all previous test runs looking for when that
test occurs, the RHS only looks at test runs in which the LHS
also occurs.

Continuing the example based on Figure 3, consider a confidence
of 50 percent. Remember we have a single LHS, so LHS9 =
{T10}. In this case, |LHSRuns9| = 6, meaning there are six
previous test runs containing the LHSRuns9 = {2, 3, 5, 6, 7, 8}.
So a confidence of 50 percent means any itemsets from the test
failures in these test runs occurring more than 6 × 0.50 = 3 times
are considered frequent.

In this example, the frequent tests, that could be part of the
RHS of interesting rules, are {T1, T3, T5, T6, T14}. Each of these
tests appeared with the left hand side in at least 3 test runs. With
these tests we can generate multiple rules with different tests in the
RHS. Unlike with traditional association rule mining though, we
do not need all combinations of items to occur in the RHS of the
rules, since all items in any RHS will be predicted as test failures.
Therefore we do not need to examine the RHS items in combina-
tions, rather we can just examine the number of failures of each test
individually to determine if it meets the minimum confidence level.
The union of all these tests which meet the confidence level is then
our predicted set of failures.

With a single LHS in this example, the set of rules is:

{T10 =⇒ T1, T10 =⇒ T3, T10 =⇒ T5, ...T6, T14}

This means that for the failure by association approach for test
run 9:

P9 = {T1, T3, T5, T6, T14}

As described earlier, the actual failures for run excluding the
smoke tests T2 and T10 are:

F9 = {T1, T3, T13, T14}

And the set of correctly predicted failures:

C9 = P9 ∩ F9 = {T1, T3, T14}

So applying the same analysis for precision, recall and F-measure,
this yields a precision of |C9|/|P9| = 3/5 = 0.6, recall of |C9|/|F9| =
3/4 = 0.75, and F-measure of 0.667.

2.3 Test Age
The final approach examined in this research is the applicability

of test age on the accuracy of the predictions. The age of a test is
the number of test runs that have occurred since that test run until
now. We define a window of data to be the set of all test runs with
age ≤ window.

145

This approach is accomplished by examining only a window of
previous data, rather than all previous data when applying the most
frequent failures and failure by association approaches. Consider
the example from Figure 3 while predicting failures for test run
number 9. If a window size of 5 is used, then instead of using test
runs 1 through 8 as historic data, only the 5 most recent runs, 4
through 8, would be examined.

Applying this approach to the most frequent failures example
previously described leads to different results. The 50 percent thresh-
old for frequent failures is now applied to 5 runs, meaning a failure
only needs to occur 3 times instead of 4 to be considered frequent.
Similarly, only runs 4 through 8 are examined for these failures. In
these runs, T1 fails 3 times and is frequent. Similarly T5, T10 and
T14 each fail three or more times in runs 4 through 8. These tests
are then predicted to fail.

Of the 4 predicted failures and 5 actual failures, 3 were correctly
predicted. This yields a precision of 3/4 = 0.75, recall of 3/5 =
0.6, and F-measure of 0.667

Note this resulting F-measure of 0.667 is slightly better than the
F-measure of 0.600 found when examining all previous test runs.
The same approach is also applied to the failure by association
when mining mining for applicable rules..

3. EMPIRICAL STUDY
As stated in Section 1, in this research, we investigate whether

the use of failure by association, most frequent failures, and test
result age can help better predict the likely test failures in a given
test run. These methods are applied to an industrial product. This
section describes the empirical study performed.

In our study, we investigate the following research questions:

RQ1: Can learning from previous test runs improve the effective-
ness of selecting tests in terms of fault prediction?

RQ2: Can restricting the set of previous test runs based on age help
increase the effectiveness of selecting tests in terms of fault
prediction?

3.1 Object of Analysis
We used the Microsoft Dynamics AX 2012 R2 product. The en-

tire Microsoft Dynamics AX product contains several million lines
of application code written in multiple programming languages,
such as C++ and X++ (a proprietary language that Microsoft de-
veloped) [10]. This size does not account for the kernel system
code that provides the runtime engine, the development interface
allowing application code to be written, the compiler and numer-
ous other system pieces allowing tasks such as interfacing with the
database.

Table 1: Dynamics AX R2 Product
Lines of Product Code 5,584,753
Lines of Metadata Code 3,986,849
Lines of Regression Test Code 4,821,215
Regression Test Computers 100
Number of Regression Tests 65,512
Code Check-ins 6667
Product builds 340
Test runs 64
Distinct test results 3,444,634
Total failed tests 309,697

Table 1 describes the attributes of the product which was stud-
ied in this research. As previously mentioned, the product contains
millions of lines of code, written in a proprietary language called
X++. This language allows much of the business logic to be ex-
pressed as metadata, such as table definitions, queries, and user

interface constructs. As such, the lines of metadata code is also
an interesting metric, as metadata can have bugs similar to other
product code. In the case of this product, the metadata is similar in
size to the X++ code in the product. Metadata code is product code
expressed in ways other than a traditional programming language.
This includes XML files which define form and table structures as
well as macros and other elements.

There are many regression tests for the product, again involving
nearly as many lines of code as the core X++ code in the product.
These 65,512 tests cannot be run on every check-in or build, as
previously discussed. They take multiple days to run, and therefore
tests are run on a regular cadence, generally once every few builds.
The R2 product release contained 340 nightly builds, usually one
each night. Of these builds, 64 of them had a regression test suite
run, or about 18 percent of the builds. Each of these regression tests
runs were scaled out across approximately 100 physical computers
during the run, with the results aggregated over the multi-day run.

Throughout the release, a total of 3,444,634 distinct test results
were captured, of which 309,697 were failures. That number repre-
sents an average of 9 percent of tests failing in any given regression
test run. Note that not all 65,512 regression tests were run every
time. Occasionally a failure of a computer or other test infrastruc-
ture would cause a test not to run. Sometimes, a set of tests may
be temporarily disabled during active development. Other tests
were added or removed throughout the release. On average ap-
proximately 53,822 of the 65,512 were executed each time though,
representing 82 percent of the total number of regression tests. For
this research, any test that was not executed in a given test run was
ignored and not included in the analysis.

Test code refers to the code used to create the regression tests
themselves. Since there are 65,512 regression tests and 4,821,215
lines of regression test code, this indicates each regression test av-
erages around 74 lines in length.

3.2 Variables and Measures

3.2.1 Independent Variables
This study manipulated two independent variables: selection tech-

nique and test result age window. We consider two control tech-
nique and four heuristic techniques as follows:

• Control: A random set of tests is selected out of the set of
previously failing tests and used as the prediction. When
recommending the tests in the control method, the number
of recommended failures needs to be determined as well. In
this study, we predicted the same number of failures as the
average number of failures seen in previous test runs.

– Trandom, full: This technique randomly selects a set
of tests from the full set of previous failure data.

– Trandom, recent: This technique randomly selects a
set of tests from the most recent previous failure data.

• Heuristics: We consider four heuristics representing the dif-
ferent combinations of failure by association and data re-
cency.

– Tfrequent, full: This technique predicts failures based
on most frequent previous failures, examining the full
set of previous build data.

– Tfrequent, recent: This technique predicts failures
based on most frequent previous failures, examining
only the most recent previous test runs.

– Tarm, full: This technique predicts failures based on
failure by association of previous failures, examining
the full set of previous build data.

146

Figure 4: Experiment Process

– Tarm, recent: This technique predicts failures based
on failure by association of previous failures, examin-
ing only the most recent previous test runs.

3.2.2 Dependent Variables
We consider two dependent variables, the precision and recall

of the predicted test failures. Precision refers to the percentage of
predicted failures that actually failed. Recall refers to the percent-
age of actual failures that were predicted. To measure the overall
effectiveness across both precision and recall, we also compute the
F-measure which is the harmonic mean of the precision and recall.

The formulas and more complete explanations of precision and
recall are presented in Section 2.

3.3 Experiment Process
This experiment was performed on historical data from the Dy-

namics AX 2012 R2 release. As previously mentioned, this release
contained 64 regression test runs. The techniques being studied
were applied to each test run, simulating what would have hap-
pened if they had been applied during the actual development cy-
cle.

As shown in the first box of Figure 4, we started with regression
test run 2 since the first regression test run had no historical data
which could be used for prediction. At the time regression test run
two was about to begin, only regression test run 1 had previously
happened, so only data from regression test 1 could be used for pre-
diction. Based on that data, we predicted the failures for regression
test run 2. Once those failures were predicted, we then compared
them with the actual results for regression test run 2 and calculated
the precision and recall for that regression test run, P2 and R2.

We then applied the same process to examine regression test run
3 (the second box in Figure 4). Again, simulating the data available
at the time regression test run 3 was about to begin, we only had
historical data from regression test runs 1 and 2. So that data was
used to predict the failures in test run 3. We then compared those
predicted failures from test run 3 against the actual failures in test
run 3 and again calculated precision and recall, P3 and R3.

Following this same process, the failures for test run 4 were pre-
dicted based on the results of runs 1 through 3 and used to calcu-
late P4 and R4. Test run 5 was predicted based on results of runs
1 through 4, yielding P5 and R5. This continued all the way up to
predicting the failures in test run 64 based on the results of test runs
1 through 63, yielding P64 and R64 (the rightmost box in Figure 4).

The only difference in this technique when applying test age to
examine only a window of data was only the most recent test runs
were examined. So with a window size of 10, the predictions for
test run 37 would be based on the results of test runs 27 through 36.

Once precision and recall had been calculated for each test run
using each technique being studied, the results were then averaged
across the 63 results for each technique.Using the average precision
and recall for each technique, we then calculated the F-measure of
the technique. (See the equations below.) Averaging the precision,
recall, and F-measure across all of the test runs is important, as
there is high variability in the precision and recall values found in
each test run across the data set. Based on the average values, we
can determine if one technique is more effective than another in
general, ignoring local variability.

AveragePrecision =

∑n
i=2

|Pi∩Fi|
|Pi|

n− 1

AverageRecall =

∑n
i=2

|Pi∩Fi|
|Fi|

n− 1

AverageF −Measure =

∑n
i=2 F −measurei

n− 1

4. DATA AND ANALYSIS
In this section we will discuss the result based on the research

questions presented in Section 3.

4.1 Failure by Association and Frequent Fail-
ures

The first research question (RQ1) addressed was whether or not
learning from previous test runs can improve the effectiveness of
test case selection in future runs. Figure 5 shows precision, recall
and F-measure for the control and heuristic techniques (failure by
association (ARM) and frequent failures). Both the frequent fail-
ures and ARM techniques are much more effective at predicting
failures than the control technique, the control having an F-measure
of 0.179 and the frequent and ARM approaches at 0.441 and 0.460
respectively.

It is also of note that while the ARM approach yielded a better
result than frequent failures, the difference was negligible. Overall,
it was only 0.04 more effective based on F-measure. Based on the
individual analysis of the association rules, it was found that very
few rules contained more than a single test on the RHS. This means
that the confidence measure in failure by association becomes very
similar to the confidence measure in the frequent failures approach
for determining predicted tests, leading to very similar prediction
effectiveness. In systems where there is higher coupling between
tests, the size of the RHS in the rules would be expected to increase,
and therefore the effectiveness of the ARM approach should also
increase compared to that of the frequent failures approach.

147

Figure 5: Effectiveness of ARM and Frequent Failures

4.2 Test Age and Analysis Windows
The second research question (RQ2) was whether restricting the

set of previous test runs based on age help increase the effectiveness
of the techniques we investigated in RQ1.

Figure 6 shows precision, recall, and F-measure across all three
approaches both with and without restricting the set of previous
test runs. It is clear from this data set that using recent test runs as
opposed to all historical test runs greatly increases the effectiveness
of fault prediction of the identified tests. This even applies in the
case of the control, which randomly selected tests from any that
had previously failed.

The cost of applying this windowed approach is also negligi-
ble. Unlike approaches such as failure by association which re-
quired several data processing steps to make predictions, applying
a window based on age actually reduces the amount of data to be
processed. The fact that reducing the amount of data sets to be
processed increases the effectiveness of the approach is important
because it means this is a very valid technique that can be applied
with no additional cost to other methods.

Figure 6: Overall effectiveness of prediction approach

4.3 Threshold Derivation
The specific support and confidence levels used in this analysis

were determined by evaluating a wide range of support and con-
fidence levels and then picking the values that yielded the highest
F-measure in each case.

Table 2 shows the precision, recall and F-measure values for sev-
eral different support and confidence levels. As shown in the table,
the highest F-measure occurs at a support level of 0.1 and a confi-
dence level of 0.25. As expected, the lower the support and confi-
dence levels, the more tests were predicted, increasing recall. But
at the same time these additional lower quality predicted failures
decreased precision leading to an overall decrease in F-measure.

Similarly, Figure 7 shows the values for the frequent failures
approach at various support levels. As shown in the figure, the

Table 2: Threshold Derivation of Failure by Association
Support Confidence Precision Recall F-Measure
0.100 0.100 0.412 0.729 0.480
0.100 0.250 0.463 0.701 0.515
0.100 0.500 0.318 0.766 0.418
0.200 0.100 0.389 0.743 0.466
0.200 0.250 0.367 0.762 0.456
0.200 0.500 0.371 0.644 0.450
0.400 0.100 0.379 0.696 0.446
0.400 0.250 0.397 0.627 0.467

highest F-measure occurs at a support level of 0.2. If the support
level is dropped below 0.2, then additional tests are predicted to fail
which do not fail. This leads to a low precision level which drops
F-measure. As the precision increases due to the higher support
level, the recall drops, leading to a lower F-measure. Due to this
inverse relationship between precision and recall based on support
level, we find that the highest F-measure occurs at a support level
of 0.2, so that is what was used for the research.

Figure 7: Threshold Derivation of Frequent Failures

The size of the sliding window was also determined empirically
as shown in Figures 8 and 9. These figures show the precision, re-
call and F-measure for both ARM and frequent failures approaches
using a variety of window sizes from 15 to 50 previous test runs, as
well as using all historical test run data.

By examining these figures, we can see that the F-measure is
best for both approaches at a window size of approximately 25 pre-
vious runs. We use F-measure as the variable we examine, as both
precision and recall can be artificially increased by selecting all or
virtually no tests, neither of which is helpful. Instead, we wish to
improve both precision and recall at the same time, which can be
measured by F-measure.

Figure 8: Window Derivation for ARM

148

Figure 9: Window Derivation for Frequent Failures

4.4 Control Prediction Size
As previously discussed, the number of recommended failures

for the control set had to be determined, and the average number of
previous failures were used. Because the best support, confidence
and window sizes were used for the heuristics, it could be argued
that the optimum number of recommendations should also have
been used for the control set. Figure 10 shows precision, recall and
F-measure using both the average number of previous failures, as
well as the results by predicting all previous failures. The different
dataset represented in the figure are as follows:

• 25, Avg is using a window size of 25 and the average number
of failures from previous runs
• 25, All is using a window size of 25 and predicting all previ-

ous failures
• Infinite, Avg is using all historical results and predicting the

average number of failures from all previous runs
• Infinite, All is using a all historical results and predicting all

tests that have ever failed

Examining the figure, it is notable that the number of recommen-
dations does not impact the precision of the prediction, as any test
that is recommended has an equal chance of matching a failure.
The only variation is in recall, where more predictions will obvi-
ously yield a higher recall, and higher F-measure. Therefore, it
follows that the best control size would be to recommend all previ-
ous failures. But this is effectively the same as predicting the most
frequent previous failures with a support level of 0.0. As discussed
above, the frequent technique yields the highest F-measure at a sup-
port of 0.2. So even with the most optimal recommendation size for
the control, it is still outperformed by the frequent technique.

As the goal of this research is to reduce the number of tests which
need to be run, recommending all tests by default is also not ben-
eficial. For those reasons, a control prediction size equaling the
average number of previous failures was used.

5. DISCUSSION AND IMPLICATIONS
Our results indicate that the effectiveness of test case failure pre-

diction can be improved through the use of historical test results,
together with an application of a concept of test result age. As
shown in Figures 5 and 6, the use of frequent failures and failure
by association produced better precision and recall values (between
0.38 and 0.56) compared to the control technique (less than 0.20)
This essentially doubles the effectiveness of prediction. Similarly,
applying a concept of test age to use only the 25 most recent test re-
sults showed increases in the effectiveness of not only the frequent

Figure 10: Control Result Size by Suggestion Volume

failures and failure by association approaches, but also in increas-
ing the effectiveness of the control approach.

While the overall results show the effectiveness of the proposed
approaches, there are additional observations and implications, and
we discuss these in the subsections.

5.1 Trading Precision for Recall
An important discussion related to this analysis is the trade-off

between precision and recall, the two measures that were used to
examine the effectiveness of the approaches. Because recall is only
a measure of the ratio of the failures that were correctly predicted,
recall can easily be increased all the way to 1.0 by just predict-
ing more and more failures until all potential failures are predicted.
Similarly, precision can be increased artificially by not predicting
any failures in cases where there is any doubt. In industrial practice
though, neither of these extremes is beneficial. When too few tests
are run, the implication is obviously that some failures will not be
caught, and the quality of the product will suffer.

The more difficult trade-off to justify is decreasing the number of
tests run when those tests may have found bugs. This would be the
case if recall were artificially increased by running all applicable
tests. It must be remembered that development time and hardware
budgets are finite resources in an industrial product release. This
means that additional processing and analysis time spent on extra
test runs which do not increase quality are taking those resources
away from other applications. Those other applications may be
performance analysis, tours testing, ad-hoc testing, or a variety of
other engineering practices. The challenge then is in balancing the
precision and recall to catch as many bugs as possible while not
stealing resources that could better be utilized elsewhere.

In the case of our analysis, the primary driver of the result set
size is the support and confidence thresholds described in Section
2. As shown in Table 2, a variety of values were used ranging from
extremely small to extremely large values. As would be expected,
lower support and confidence thresholds predicted more failures
and therefore increased recall. Similarly, higher confidence thresh-
olds increased precision by only predicting tests more likely to fail.

While we picked the levels that showed the best F-measure in
this research, it is important to note that virtually all levels of sup-
port and confidence yielded better precision and recall than the con-
trol. The same is true for the frequent failures approach as shown
in Figure 7 for all values of support below 0.5. The fact that F-
measure was higher with ARM and frequent failure approaches
than with the control approach at a range of support and confidence
thresholds means the support and confidence thresholds can be fur-
ther tuned for a given development organization to increase or de-
crease the number of tests predicted based on available resources
and what other quality projects could otherwise be funded.

149

5.2 Test Case Age
Another interesting aspect of this research is the shape of the

curves depicted in Figures 8 and 9. Note in both of these cases
that the F-measure increases with a smaller window size compared
to using all results, but then decreases again as the window size
becomes smaller yet.

We speculate that these curved variations in the F-measure based
on test result age are resulted from the fact that different areas of
the product have been developed at different times throughout the
development cycle. Suppose we have a system would go through a
number of code changes. During the phase of active development
and stabilization, a given test failure in one test run is likely to be
followed by a similar failure in a subsequent run if the area impact-
ing that test is still unstable. Similarly, fixing bugs found by tests in
an area will cause code churn and make other failures in that area
more likely until it is done stabilizing.

At the same time, other areas of the product are not being worked
on as actively and therefore do not exhibit the same instability.
Over time as one area is stabilized and the development team moves
on to another area, the stability moves accordingly. This is why we
believe that more recent test results are better predictors of failure
than older ones. Once that window becomes too small, the number
of previous results being examined decreases markedly. At some
point, not enough data is available to make good predictions any
more.

Further, we believe the size of the window will likely differ from
product to product. Various factors, such as the length of develop-
ment cycles, the stabilization time frames, and even the develop-
ment methodologies used by the team may impact the choice of the
window size.

5.3 Cost of Implementation
Implicit in this research but not yet discussed is the fact that per-

forming analysis such as failure by association or frequent failures
to predict test failures is an engineering activity which in itself has
a cost. As discussed earlier in this section, spending cost on one
quality activity in product development necessarily takes away time
and resources that could have been spent on other, potentially more
important activities. The cost of performing the research in this
paper was not explicitly captured, so it will not be discussed quan-
titatively. A qualitative discussion is still helpful however.

The two primary techniques used for predicting based on pre-
vious failures were the failure by association and frequent failures
approaches. Between these two approaches, failure by association
demonstrated approximately a four percent benefit over that of fre-
quent failures as shown in Figure 6. This does not necessarily mean
that failure by association is a better approach. One challenging
task is how to efficiently mine the applicable association rules for
every test run. This is especially significant considering the fact that
most frequent itemset mining algorithms (e.g., Apriori [1], ECLAT
[14], FP-growth [6]) enumerate the entire extremely large frequent
itemsets search tree.

This means that as the number of items in the itemsets increases,
the cost of running these algorithms increases dramatically. In our
case, it was only after about a large amount of pruning and perfor-
mance tuning that the data and approach of failure by association
were efficient enough to complete in a less than a few days. One
such performance tuning activity was searching only within test
runs which contained the same failures as occurred in the smoke
tests.

Agrawal and Srikant [1] discuss many other association rule min-
ing algorithms, many of which are more efficient than Apriori. But
compared to performing analysis of most frequent failures, all of

these algorithms are significantly more complex to write, as well
as significantly more costly to execute on a computer. The most
frequent failures approach took only around a day to write and less
than an hour to execute.

Based on this experience and the fact that failure by association
only yielded an improvement of around four percent in effective-
ness, we recommend applying a most frequent failures approach in
industrial application. The additional resource savings by using the
frequent failures approach can be applied to other quality activities
during the software release cycle.

5.4 Threats to Validity
In this section, we discuss the threats to validity of our study.

The study was performed on the Microsoft Dynamics AX 2012 R2
release. As this is a single release of a single product, the results
seen in this study will not necessarily translate to all other products
or releases. This particular release involved the significant use of
software branches, meaning that development of different portions
of development were occurring separately. The branching was not
controlled for in the results, and therefore may have had an impact
on the results of the study since branch integrations are times are
artificially large code change in the branch from which the tests are
run.

This study focuses on the relationships between different tests
and their propensity to fail. Since the amount of coupling or other
inter-test relationships is purely based on the actions of the engi-
neers building those tests, other products built by other companies
and other groups of developers may exhibit stronger or weaker re-
lationships than those observed in this study.

Similarly, the release cycle for this product was approximately
one year. As discussed earlier, the changes in development focus
are believed to contribute significantly to the validity of relation-
ships between test failures. Thus, other products with different re-
lease cadences may experience different results.

As no test or product development environment is ideal, the set
of tests which could be and were run varied in each test run. This
study ignores all tests that did not exist prior to a given test run, or
which stopped existing after that test run due to standard ongoing
development during the release. Since a test being added or re-
moved from the test suite is not an indication of previous or future
failures, it was ignored. Because of this, not all test results were
considered in the study. Exclusion of results for this reason may
have had an impact on the results of the study.

6. RELATED WORK
Performing cost effective regression testing is an important issue

for most companies, in particular, for those who build large-scale
products with large number of test cases. Advanced regression
testing techniques can improve the cost-effectiveness of regression
testing by identifying important tests that are more likely to detect
defects. Identifying such test cases can decrease the time to find-
ing and fixing bugs, as well as minimize the resources required to
run test suites. A wide variety of regression testing techniques have
been studied, and an overview of many of these techniques is dis-
cussed by Yoo and Harman [13] and Engstrom et al. [5].

A study relevant to our work is done by Nagappan and Ball [11].
The proposed approach has been used in many companies includ-
ing Microsoft and is often referred to as churn based testing. It is
the act of correlating the code changes made in a given build with
the tests that should be run on that build. For instance, cross ref-
erences in the product may indicate which tests call a method that
was involved in the change, and then these tests would be run to
validate the change. A problem with this approach comes when the

150

cost of running the tests is prohibitively high, such as the case with
this research. The number of code changes made between each re-
gression test suite run was large enough that the vast majority of
tests would be predicted in each test run. Therefore, our research
focused on further reducing the set of predicted failures beyond
what traditional code churn based testing would allow.

Another related area of study receiving attention is in the area
of applying network analysis to software defects. These techniques
range from network analysis of dependency graphs [15] to apply-
ing dependency graphs in determining testing strategies [8]. While
our research focuses on the dependencies between tests, we are
looking primarily at historical test results as opposed to static anal-
ysis of code and module dependencies such as this research.

Beyond the regression testing area, in the software engineering
field, data mining has recently been used to analyze the volumi-
nous amounts of data generated from version control systems or
fault reporting systems [9, 12, 16]. Nagappan et al. [12] present
an approach to mining data to predict error-prone components. To
investigate their approach, they retrieved various software metrics
and failure information from the version control system for five
software projects developed at Microsoft. Zimmermann et al. [16]
present an approach that applies data mining to provide information
related to code changes to programmers, such as suggestions or pre-
dictions of likely changes. Livshits and Zimmermann [9] present
an automatic way to discover common error patterns that reside
in software revision histories by combining data mining with dy-
namic analysis techniques. All of these approaches described have
shown that data mining could be useful in finding patterns and re-
lationships that can help various software engineering tasks from
massive software repositories.

7. CONCLUSIONS AND FUTURE WORK
As shown in this research, there are hidden relationships between

test failures which may be mined to more accurately predict fail-
ures in future runs. It was also shown that the majority of these re-
lationships are simple frequency relationships as opposed to more
complex interactions between groups of test failures. This likely
suggests that the tests themselves exhibit low coupling, which is
advantageous. The tests are intended to not overlap each other in
functionality, and this research suggests that they largely do not.

The other interesting result of this research is the drastic increase
in prediction abilities when using a relatively small window of re-
cent historical data, as opposed to full historical data. This suggests
that not only are more recent failures better predictors than less re-
cent failures, it also suggests that using less recent failures can be
detrimental in prediction abilities. This is likely a result of different
phases of development focusing on different areas of the product.
While an area is being actively developed, tests that exercise that
area are more likely to fail more often. When that development
ceases, little variation in test failures is expected.

A potential future expansion of this research is to examine pair-
ing frequent failure and windowing approaches with churn-based
test prediction. Our results suggest that recent frequent failures are
likely to reoccur, so it would be interesting to determine if addi-
tional tests beyond those proposed through churn-based techniques
would be valuable to run. It would also be interesting to apply
this same approach to additional industrial products to determine if
similar relationships and distributions exist in other products.

8. ACKNOWLEDGMENTS
This work was supported in part by NSF CAREER Award CCF-

1149389 to North Dakota State University, grants from the National
Center for Research Resources (P20 RR016471) and the National

Institute of General Medical Sciences (P20 GM103442) from the
National Institutes of Health.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proceedings of the
20th International Conference on Very Large Data Bases,
pages 487–499, Sept. 1994.

[2] R. V. Binder. Testing Object-Oriented Systems. Addison
Wesley, Upper Saddle River, NJ, 1999.

[3] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The
effects of time constraints on test case prioritization: A series
of controlled experiments. IEEE Transactions on Software
Engineering, 26(5), Sept. 2010.

[4] H. Do and G. Rothermel. An empirical study of regression
testing techniques incorporating context and lifecycle factors
and improved cost-benefit models. In Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software
Engineering, Nov. 2006.

[5] E. Engstrom, P. Runeson, and M. Skoglund. A systematic
review on regression test selection techniques. Information
and Software Technology, 52(1):14 – 30, 2010.

[6] J. Han, J. Pei, Y. Yin, and R. Mao. Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree
Approach. In Data Mining and Knowledge Discovery, pages
53–87, Jan. 2004.

[7] B. Kaner and pettichord. Lessons Learned in Software
Testing. Wiley Computer Publishing, 2002.

[8] B. Korel. The program dependence graph in static program
testing. In Information Processing Letters, volume 24, pages
103–108, 1987.

[9] B. Livshits and T. Zimmermann. DataMine: Finding
common error patterns by mining software revision histories.
In International Symposium on Foundations of Software
Engineering, pages 296–305, Sept. 2005.

[10] Microsoft Corporation. XML Documentation Tags.
http://msdn.microsoft.com/en-us/library/cc607340.aspx, Feb.
2010.

[11] N. Nagappan and T. Ball. Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study. In International Symposium on Empirical Software
Engineering and Measurement, pages 364–373, 2007.

[12] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. In Proceedings of the
International Conference on Software Engineering, May
2006.

[13] S. Yoo and M. Harman. Regression testing minimisation,
selection and prioritisation : A survey. Software Testing,
Verification, and Reliability, Mar. 2010.

[14] M. Zaki and K. Gouda. Fast vertical mining using diffsets. In
Proceedings of the ningth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
326–335, 2003.

[15] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. In Proceedings of
the 30th International Conference on Software Engineering,
pages 531–540, 2008.

[16] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller.
Mining versions histories to guide software changes. In
Proceedings of the International Conference on Software
Engineering, pages 563–572, May 2004.

151

